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ABSTRACT

Sparse linear arrays, such as co-prime and nested arrays, can
identify up to O(M2) sources with only O(M) sensors by
using co-array based MUSIC. We conduct analytical per-
formance analysis of two coarray based MUSIC algorithms,
namely the direct augmentation based MUSIC, and the spa-
tial smoothing based MUSIC. In addition, we analyze the
Cramér-Rao bound for sparse linear arrays, and show that
for co-prime and nested arrays, it can decrease at a rate of
O(M−5) as the number of sensors M goes to infinity, in
contrast to O(M−3) in the ULA case. We use numerical
examples to demonstrate our analytical results.

Index Terms— performance analysis, mean-square error,
MUSIC, sparse linear arrays, Cramer-Rao bound

1. INTRODUCTION

Recently, new types of sparse linear arrays have been pro-
posed, such as co-prime arrays [1–3] and nested arrays [4–
6]. Unlike uniform linear arrays (ULAs), these arrays have
the attractive property of providing up to O(M2) degrees of
freedom with only M sensors, which is possible by exploit-
ing the so-called coarray structure. An augmented (coarray)
covariance matrix with dimension O(M2) can then be con-
structed, and MUSIC [7] can be applied to identify up to
O(M2) sources. We call the MUSIC algorithm applied to the
coarray covariance matrix “coarray-based MUSIC,” to distin-
guish it from the MUSIC algorithm directly applied to the
original sample covariance matrix.

In [8] and [9], the authors conducted a detailed analysis
of the performance of the MUSIC estimator. They derived
the asymptotic mean-square error (MSE) expression of the
MUSIC estimator and rigorously analyzed its statistical ef-
ficiency. Later in [10], the authors derived a unified mean-
square error (MSE) expression for various subspace-based es-
timators based on first-order perturbation theory. However,
because the coarray covariance matrix has different statis-
tical properties from the original sample covariance matrix,
these results cannot be applied to coarray-based MUSIC. In
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[11], the authors first derived a general asymptotic MSE ex-
pression for the MUSIC algorithm applied to matrices trans-
formed from the sample covariance matrix. While this ex-
pression is applicable to coarray-based MUSIC, its explicit
form is very complicated. In this paper, we present a simpler
and more revealing asymptotic MSE expression for two com-
monly used coarray-based MUSIC algorithms. Additionally,
we numerically show that our asymptotic MSE expression
can well predict the resolution limit of coarray-based MUSIC.

The Cramér-Rao bound (CRB) for uniform linear arrays
was well-investigated in [8, 9]. Recently, in [12–15], the au-
thors independently derived the CRB for sparse linear arrays
in the case when the number of sources exceeds the number
of sensors. In this paper, we further investigate how the CRB
various according to the number of sensors. We show that
for co-prime and nested arrays, the Cramér-Rao bound (CRB)
can decrease at a rate of O(M−5) as M →∞.

2. THE COARRAY-BASED MUSIC

We consider an M -sensor sparse linear array whose sensors
are located on a uniform grid. The sensor locations are given
by D = {d1, d2, . . . , dM}. We also denote the sensor lo-
cations using the integer set D̄ = {d̄1, d̄2, . . . , d̄M}, where
d̄i = di/d0 for i = 1, 2, . . . ,M , and d0 is the grid size.
Examples of such sparse linear arrays include co-prime and
nested arrays, whose definitions are given in Definition 1.

Definition 1. A co-prime array generated by the co-prime
pair (M,N) is given by {0,M, . . . , (N−1)M}∪{N, 2N, . . . ,
(2M − 1)N} [1]. A nested array generated by the parameter
pair (N1, N2) is given by {0, 1, . . . , N1 − 1} ∪ {N1, 2N1 +
1, . . . , N2N1 +N2 − 1} [4].

We assumeK far-field narrow-band sources impinging on
the array from directions θ1, θ2, . . . , θK . The received mea-
surement vectors can be expressed as

y(t) = A(θ)x(t) + n(t), t = 1, 2, . . . , N, (1)

where A = [a(θ1)a(θ2) . . . a(θK)] denotes the array steer-
ing matrix, x(t) denotes the source signal vector, n(t) de-
notes additive complex white Gaussian noise, and N de-
notes the number of snapshots. We adopt the unconditional



model in [16] which assumes that x(t) follows the circularly-
symmetric Gaussian complex Gaussian distribution. We
assume that the sources are uncorrelated and that the additive
noise is uncorrelated from the sources. We further assume no
temporal correlation between each snapshot.

Under the aforementioned assumptions, the sample co-
variance matrix is given by R = APAH + σ2

nI , where
P = diag(p1, p2, . . . , pK), pk is the power of the k-th source,
and σ2

n denotes the variance of the additive noise. By vector-
izingR, we obtain

r = Adp+ σ2
ni, (2)

where Ad = A∗ � A, � denotes the Khatri-Rao product
[17], p = [p1, p2, . . . , pK ]T , i = vec(I). For a matrix A =
[a1 a2 . . . aN ], we define vec(A) = [aT

1 a
T
2 . . . aT

N ]T

We can observe that Ad embeds a steering matrix of an
array whose sensor locations are given by Dco = {dm −
dn|1 ≤ m,n ≤ M}. By averaging the redundant rows
of Ad, we can construct a new steering matrix represent-
ing a virtual ULA with enhanced degrees of freedom. It can
be easily shown that this virtual ULA is centered at the ori-
gin. Therefore we can denote its sensor locations by [−Mv +
1,−Mv +2, . . . , 0, . . . ,Mv−1]d0, whereMv is defined such
that 2Mv − 1 is the size of the virtual ULA. To better illus-
trate the relationship between the physical array model and
the coarray model, we introduce the following definitions.

Definition 2. The array weight function [4] ω(n) : Z 7→ Z is
defined by ω(l) = |{(m,n)|d̄m− d̄n = l}|, where |A| denote
the cardinality of the set A.

Definition 3. The transform matrix [12] F is a real matrix of
size (2Mv − 1)×M2, whose elements are defined by

Fm,p+(q−1)M =

{
1

ω(m−Mv)
, d̄p − d̄q = m−Mv,

0 , otherwise,
(3)

for m = 1, 2, . . . ,Mv, p = 1, 2, . . . ,M, q = 1, 2, . . . ,M .

Base on these definitions, we can express the measure-
ment vector of the virtual ULA by z = Fr = Acp+ σ2

nFi,
where Ac represents the steering matrix of the virtual ULA,
and i = vec(I). The virtual ULA can be divided into
Mv overlapping uniform subarrays of size Mv, whose out-
puts are given by zi = Γiz for i = 1, 2, . . . ,Mv. Γi =
[0Mv×(i−1) IMv×Mv 0Mv×(Mv−i)] represents the selection
matrix for the i-th subarray. Given zi, two common ways of
constructingRv can be expressed as:

Rv1 = [zMv
zMv−1 · · · z1], (4a)

Rv2 =
1

Mv

Mv∑
i=1

ziz
H
i . (4b)

Method (4a) corresponds to the direct augmentation approach
[18,19], while method (4b) corresponds to the rank enhanced

spatial smoothing approach introduced in [4]. For brevity,
we use the term “direct augmentation based MUSIC” (DA-
MUSIC) and the term “spatial smoothing based MUSIC” (SS-
MUSIC) to denote the MUSIC algorithm applied to Rv1 and
Rv2, respectively. If we design a sparse linear array such
that Mv > M , both DA-MUSIC and SS-MUSIC can identify
more sources than M .

We observe from (4a) and (4b) that Rv1 and Rv2 have
different statistical properties from R. Therefore the asymp-
totic MSE expression for the classical MUSIC algorithm does
not work for coarray-based MUSIC. We will present the new
asymptotic MSE expression in the following section.

3. THE MEAN-SQUARE ERROR

Note that both Rv1 and Rv2 are constructed from R. How-
ever, in practice, the real sample covariance matrix R is
unobtainable, and its maximum-likelihood estimate R̂ =
1
N

∑N
t=1 x(t)x(t)H is used. The estimated signal subspace

does not accurately represent the true signal subspace, leading
to DOA estimation errors. The perturbation of the signal sub-
space can be attributed to the estimation error ∆R = R̂−R.
Given a sufficient number of snapshots, the ∆R will be suf-
ficiently small, and we can analyze the asymptotic estimation
errors of both DA-MUSIC and SS-MUSIC with eigenvector
perturbation theory [20,21]. Our main results are summarized
in Theorem 1 and Theorem 2 [12].

Theorem 1. Let θ̂(DA)
k and θ̂(SS)k denote the estimated val-

ues of θk using DA-MUSIC and SS-MUSIC, respectively. Let
∆r = vec(R̂−R). Then

θ̂
(DA)
k − θk

.
= θ̂

(SS)
k − θk

.
= − λ

2πd0pk cos θk

I(ξT ∆r)

βH
k βk

,

where .
= denotes asymptotic equality and

ξk = F TΓT (βk ⊗αk),

αT
k = −eTkA†v,
βk = Π⊥Av

Dav(θk).

Γ = [ΓT
Mv

ΓT
Mv−1 · · ·Γ

T
1 ]T ,

D = diag(0, 1, . . . ,Mv),

Theorem 2. The asymptotic MSE expressions of DA-MUSIC
and SS-MUSIC have the same form:

E[(θ̂k − θk)2]
.
=

λ2

4π2Nd20p
2
k cos2 θk

ξHk (R⊗RT )ξk
‖βk‖42

(5)

for k ∈ {1, 2, . . . ,K}.

Theorem 1 implies that DA-MUSIC and SS-MUSIC have
the same asymptotic estimation error, despite the fact that
Rv1 is a linear transform of the elements in z, and that Rv2

is a quadratic transformation of the elements in z. Based on
Theorem 1, we can derive the asymptotic MSE for both DA-
MUSIC and SS-MUSIC, which is presented in Theorem 2.



For brevity, we denote the asymptotic MSE of the k-
th DOA as ε(θk). From Theorem 2 we know that ε(θk) is
inversely proportional to the number of snapshots and the
source power. The term cos2 θk in the denominator implies
that ε(θk) will be large near end-fire regions. Another inter-
esting implication of Theorem 2 is that ε(θk) depends on both
the physical array geometry and the virtual array geometry.
Even if two arrays share the same virtual array, they may
have different ε(θk) because their physical array geometries
can be different. An illustrative example is provided in Fig. 1,
where we plot the RMSEs for four different nested arrays
with (N1, N2) set to (5, 6), (2, 12), (3, 9), and (1, 18), re-
spectively. It can be easily shown that they share the same
virtual ULA. However, as shown in Fig. 1, they exhibit differ-
ent performances under different signal-to-noise ratio (SNR)
settings and different numbers of sources.
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Fig. 1. RMSE vs. SNR for four different nested array config-
urations. Left: K = 8. Right: K = 20.

Some interesting properties of ε(θk) in high SNR regions
are summarized in Corollary 1, and the special one-source
case of Theorem 2 is given in Corollary 2. Specifically, we
observe that ε(θk) is strictly greater than zero when the num-
ber of sources is greater or equal to the number of sensors.
This explains the “saturation” behavior of SS-MUSIC ob-
served in [4] and [3].

Corollary 1. Assume all sources have the same power p. Let
SNR = p/σ2

n denote the common SNR. Then ε(θk) decreases
monotonically as p̄ increases, and

lim
SNR→∞

ε(θk) =
λ2

4π2Nd20p
2
k cos2 θk

‖ξHk (A⊗A∗)‖22
‖βk‖42

. (6)

Specifically, when K = 1, the above expression is exactly
zero, and when K ≥ M the above expression is strictly
greater than zero.

Corollary 2. Let K = 1. Then

ε(θ) =
36λ2C

π2NM6
vd

2
0p

2
k cos2 θ

, (7)

where

C = ξ̃H(1M1T
M + σ2

nI)⊗ (1M1T
M + σ2

nI)ξ̃H , (8)

ξ̃ = F TΓT
{[( 1

Mv
D − 1

2
I
)
1Mv

]
⊗ 1Mv

}
. (9)
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Fig. 2. MSE vs. number of sensors. SNR = 0dB, and
N = 1000. The solid lines denote analytical results, while
crosses denote numerical results. A dashed black trend line is
included for comparison.

Using Theorem 2 and Corollary 2, we can analyze the
decreasing rate of ε(θ) as M goes to infinity. In Fig. 2, we
plot ε(θ) versus the number of sensors, as well as the results
obtained from numerical simulations. The co-prime arrays
were generated by the co-prime pairs (m,m + 1), and the
nested arrays were generated by the parameter pairs (m +
1,m), where we varied m from 2 to 12. We observe that ε(θ)
decreases at a rate of approximatelyO(M−4.4) for both array
configurations for the one source case. For the multi-source
case, we observe that ε(θ) does not decrease monotonically
with respect to M , while approximately following the trend
line given by O(M−4.4).

4. THE CRAMÉR-RAO BOUND

The CRB for general sparse linear arrays is given by [12, 13,
15]:

CRBθ =
1

N
(MH

θ Π⊥Ms
Mθ)−1, (10)

where Mθ = (RT ⊗ R)−1/2ȦdP , and Ms = (RT ⊗
R)−1/2

[
Ad i

]
. Here we define Ȧd = Ȧ∗ �A +A∗ � Ȧ,

and Ȧ = [∂a(θ1)/∂θ1, · · · , ∂a(θK)/∂θK ]. Ad and i follow
the same definitions as in (2).

The properties of the CRB (10) in high SNR regions is
summarized in Proposition 1 [12]. We observe that when
K ≥ M , the CRB does not go to zero as SNR goes to in-
finity. This puts a strictly positive lower bound on the MSE
of all unbiased estimators.

Proposition 1. Assume all sources have the same power p,
and [ȦdP Ad i

]
is full column rank. Let SNR = p/σ2

n. Then
(1) if K < M , and limSNR→∞CRBθ exists, it is zero under
mild conditions; (2) ifK ≥M , and limSNR→∞CRBθ exists,
it is positive definite when K ≥M .

Because both co-prime and nested arrays are constructed
from two uniform arrays, we are able to approximate the CRB
(10) in case of large M . Our main result on the relationship
between the CRB and M for co-prime and nested arrays as
M goes to infinity is summarized in Theorem 3. The detailed
proof of Theorem 3 will be given in [22].
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Fig. 3. CRB vs. number of sensors. SNR = 0dB, and N =
1000. A dashed black trend line is included for comparison.

Theorem 3. Assume that all sources share the same power.
For co-prime arrays generated with co-prime pair (Q,Q+1),
or nested arrays generated with parameter pair (Q,Q), if we
fix K � Q, then as Q→∞, the CRB can decrease at a rate
of O(Q−5).

Recall that for ULAs, the CRB decreases at a rate of
O(M−3) as M → ∞ [8]. Theorem 3 implies that co-prime
and nested arrays can achieve the same performance as ULAs
with fewer sensors. As an illustrative example, we plot the
CRB versus the number of sensors for co-prime and nested
arrays in Fig. 3. We observe that when M is large, the CRB
follows the trend line given by O(M−5).

5. APPLICATION TO RESOLUTION ANALYSIS

In this section, we demonstrate the application of Theorem 2
to resolution analysis with numerical examples. We consider
the following four array configurations:

• Co-prime (2,3): [0, 2, 3, 4, 6, 9]d0
• MRA: [0, 1, 2, 6, 9]d0
• Nested (1,5): [0, 1, 3, 5, 7, 9]d0
• Nested (4,2): [0, 1, 2, 3, 4, 9]d0

It can be verified that all four arrays have the same aperture.
For two closely spaced sources located at θ − ∆θ/2 and

θ + ∆θ/2, we use the following criterion to analytically de-
termine the resolvability:√

ε(θ −∆θ/2) +
√
ε(θ −∆θ/2) ≥ µ∆θ, (11)

where µ is a tunable factor. The resolution limit at θ is ob-
tained by finding the minimum ∆θ that satisfies (11). We set
µ = 1 and θ = 0◦ in the following experiments.

Fig. 4 plots the probability of resolution of different arrays
for different numbers of snapshots, with SNR fixed to 0dB. It
can be observed that our analytical expression well predicts
the resolution limit. It can be also noted that despite having
the same aperture, the four different arrays actually exhibit
different resolution limits. The nested arrays and the MRA
can resolve more closely spaced sources than the co-prime
array. Fig. 5 plots the probability of resolution of different ar-
rays for different SNR settings. Again it can be observed that
our analytical expression well predicts the resolution limit.

Fig. 4. Resolution probability of different arrays for different
N with SNR fixed to 0dB, obtained from 500 trials. The red
dashed line is the analytical resolution limit obtained by (11).

Fig. 5. Resolution probability of different arrays for different
SNRs with N = 1000, obtained from 500 trials. The red
dashed line is the analytical resolution limit obtained by (11).

6. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the asymptotic MSE of DA-
MUSIC and SS-MUSIC and the CRB for sparse linear arrays.
We showed that when the number of source is greater than
the number of sensors, both the MSE and the CRB are strictly
non-zero as SNR goes to infinity, which explains the “satura-
tion” behavior of coarray-based MUSIC observed in previous
studies. We also showed that for co-prime and nested ar-
rays, the CRB can decrease at a rate of O(M−5). Finally,
we demonstrated the application of our asymptotic MSE ex-
pression in resolution analysis with numerical examples. In
the future, we will examine the possibility of deriving closed
form expressions for both the MSE and the CRB in the case
of large M . It will also be interesting to incorporate model
errors and analyze their influence on the MSE and the CRB.
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