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Abstract—Sparse linear arrays, such as co-prime and nested
arrays, can resolve more uncorrelated sources than the number
of sensors by applying the MUtiple SIgnal Classification (MU-
SIC) algorithm to their difference coarray model. We aim at
statistically analyzing the performance of the MUSIC algorithm
applied to the difference coarray model, namely, the coarray-
based MUSIC, in the presence of sensor location errors. We first
introduce a signal model for sparse linear arrays in the presence
of deterministic unknown location errors. Based on this signal
model, we derive a closed-form expression of the asymptotic
mean-squared error (MSE) of a commonly used coarray-based
MUSIC algorithm, SS-MUSIC, in the presence of small sensor
location errors. We show that the sensor location errors introduce
a constant bias that depends on both the physical array geometry
and the coarray geometry, which cannot be mitigated by only
increasing the signal-to-noise ratio (SNR). We next give a short
extension of our analysis to cases when the sensor location errors
are stochastic, and investigate the Gaussian case. Finally, we
derive the Cramér-Rao bound for joint estimation of direction-
of-arrivals (DOAs) and sensor location errors for sparse linear
arrays, which can be applicable even if the number of sources
exceeds the number of sensors. Numerical simulations show good
agreement between empirical results and our theoretical results.

Index Terms—performance analysis, sparse arrays, co-prime
arrays, nested arrays, mean-squared error, MUSIC, Cramér-Rao
bound

I. INTRODUCTION

D IRECTION-OF-ARRIVAL (DOA) estimation is an im-
portant topic in array signal processing with wide appli-

cations, such as radar and sonar [1], [2]. With uniform linear
arrays (ULAs), classical subspace-based algorithms, such as
MUSIC, can resolve up to M−1 sources using M sensors [3]–
[6]. Sparse linear arrays, such as co-prime arrays [7]–[10] and
nested arrays [11]–[15], are specially designed non-uniform
linear arrays. By exploiting their difference coarray model,
an augmented covariance matrix with enhanced degrees of
freedom can be constructed [11], [16]. MUSIC can then be
applied to the augmented covariance to resolve up to O(M2)
uncorrelated sources using only O(M) sensors.

The aforementioned difference coarray model is developed
under the assumption that the underlying array is accurately
calibrated. However, various array imperfections, such as
mutual coupling [17], gain and phase errors [18], [19], and
location errors [20], exist in practice and lead to degraded
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estimation performance [21], [22]. Various works have focused
on analyzing the sensitivity of direction finding algorithms and
the achievable bounds in the presence of array imperfections.
In [20], the authors derived a hybrid Cramér-Rao bound on
calibration and source localization for general two-dimensional
arrays in the presence of sensor location errors. Based on the
derived Cramér-Rao bound (CRB), the authors showed the
condition when the CRB goes to zero as the SNR approaches
infinity. In [21] and [23], the authors conducted a thorough
performance analysis of subspace-based DOA estimators in
the presence of model errors. In [24], the authors analyzed
the resolution probability of the MUSIC algorithm, while
taking into account model errors. However, the aforementioned
analyses are based on the physical array model, and the
number of sources is usually fewer than the number of sensors.
The performance of direction finding algorithms based on the
difference coarray in the presence of model errors has not
been widely analyzed. Recently, in [25], the authors evaluated
the performance of uniform and nonuniform samplers in the
presence of model errors based on the CRB of grid-based
model. These results can be applied to direction finding
algorithms based on the difference coarray model. However,
their analysis assumes one-dimensional perturbations along the
array and that the DOAs lie on a predefined grid. In this
paper, neither do we restrict our analysis to one-dimensional
perturbations, nor do we assume a grid-based model.

Sensor location errors are common array imperfections.
Unlike gain and phase errors, perturbed array manifolds are
nonlinear with respect to sensor location errors. This non-
linearity makes it more difficult to analyze the effect of
sensor location errors on direction finding algorithms. In this
manuscript, we focus on analyzing the performance of coarray-
based MUSIC in the presence of sensor location errors. More
specifically, we consider the commonly used SS-MUSIC [11]
algorithm. We first introduce a signal model of difference coar-
rays in the presence of deterministic sensor location errors in
Section II. Based on this signal model, we derive a closed-form
expression of the asymptotic (i.e., large number of snapshots)
MSE of SS-MUSIC in the presence of small sensor location
errors in Section III. We show that the sensor location errors
result in a constant bias that depends on both the physical
array geometry and the difference coarray geometry. We then
provide an brief extension of our analysis to incorporate
stochastic (or time-variant) sensor location errors, specifically
for the Gaussian case, in Section IV. Finally, in Section V, we
derive the CRB on joint estimation of the DOAs and sensor
location errors for general sparse linear arrays, which can be
applicable even if the number of sources exceeds the number
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of sensors. We present extensive numerical demonstrations
in Section VI and draw concluding remarks in Section VII.
It should be mentioned that while our analyses are focused
on sensor location errors, they can be readily extended to
incorporate other array imperfections.

Throughout this paper, we make use of the following
notations. For a matrix A, we denote the transpose, the
Hermitian transpose, and the conjugate of A by AT , AH ,
and A∗, respectively. We use Aij or A(i, j) to denote the
(i, j)-th element of A, and ai to denote the i-th column of
A. If A is full column rank, its pseudo inverse is defined
as A† = (AHA)−1AH . We define the projection matrix
onto the null space of A as Π⊥A = I − AA†. Let A =
[a1 a2 . . . aN ] ∈ CM×N , and we define the vectorization
operation as vec(A) = [aT1 a

T
2 . . . aTN ]T . We use ⊗, �, and

◦ to denote the Kronecker product, the Khatri-Rao product
(i.e., the column-wise Kronecker product), and the Hadamard
product, respectively. We denote by <(A) and =(A) the real
and the imaginary parts of A. If A is a square matrix, we
denote its trace by tr(A). We use e(i)N to denote the i-th natural
base vector in RN .

II. SIGNAL MODEL

A sparse linear array can be viewed as a thinned ULA,
whose sensors are located on a uniform grid of grid size d0,
where d0 is usually chosen as the half-wavelength, λ/2, to
avoid ambiguities. Examples of sparse linear arrays include co-
prime arrays [7], nested arrays [11], and minimum redundancy
linear arrays (MRAs) [26]. The sensor locations of co-prime
arrays and nested arrays can be determined by closed-form ex-
pressions, as presented in Definition 1. Minimum redundancy
linear arrays, however, can not be constructed from closed-
form expressions.

Definition 1. A co-prime array generated by the co-prime pair
(M,N) is given by {0,M, . . . , (N − 1)M} ∪ {N, 2N, . . . ,
(2M − 1)N} [7]. A nested array generated by the parameter
pair (N1, N2) is given by {0, 1, . . . , N1 − 1} ∪ {N1, 2N1 +
1, . . . , N2N1 +N2 − 1} [11].

We consider a sparse linear array placed along the x-axis of
a 2D plane. We denote the nominal sensor locations as D =
{(d1, 0), (d2, 0), . . . , (dM , 0)}, where M is the total number
of sensors and di are integer multiples of d0. Without loss of
generality, we assume d1 = 0 (i.e., the first sensor is placed
at the origin).

We consider K co-planar far-field narrow-band sources im-
pinging on the array from the directions θ = [θ1, θ2, . . . , θK ].
The N snapshots received by the array are expressed as

y(t) = A(θ)x(t) + n(t), t = 1, 2, . . . , N, (1)

where A(θ) = [a(θ1) a(θ2) · · · a(θK)] denotes the array
steering matrix, x(t) denotes source signals, and n(t) denotes
additive noise. Without sensor location errors, the vector a(θk)
can be expressed as

a(θk) = [ej
2π
λ d1 sin θk ej

2π
λ d2 sin θk · · · ej 2π

λ dM sin θk ]T . (2)

We make the following assumptions on the statistical prop-
erties of the source and noise signals:

(a)
O

d0

(b)
O

(c)
O

−Mcod0 Mcod0

ULA of 2Mco − 1 sensors

Fig. 1. (a) A co-prime array with sensors located at [0, 2, 3, 4, 6, 9]d0; (b)
its difference coarray; (c) central ULA part of the difference coarray.

A1 The source signals follow the unconditional model [27]
and are spatially and temporally uncorrelated.

A2 The source DOAs are distinct (i.e., θk 6= θl ∀k 6= l) and
within the range (−π/2, π/2).

A3 The additive noise is spatially and temporally uncorre-
lated white circularly-symmetric Gaussian and uncorre-
lated from the sources.

Following assumptions A1–A3, the covariance matrix of
y(t) is given by

R = E[y(t)yH(t)] = A(θ)PAH(θ) + σ2
nI, (3)

where P = diag(p1, p2, . . . , pK) is the covariance matrix of
the source signals. Vectorizing R in (3) leads to

r = (A∗ �A)p+ σ2
n vec(I), (4)

where p = [p1, p2, ..., pk]T . It can be observed that r re-
sembles a single measurement vector whose steering matrix
embeds a difference coarray whose sensor locations are given
by Dco = {(dm − dn, 0)|dm, dn ∈ D}. The matrix (A∗ �A)
is the steering matrix of the difference coarray. The vector
p resembles a deterministic source signal, and the vector
σ2
n vec(I) resembles a deterministic additive noise.
It has been shown that for well-designed sparse linear

arrays, Dco contains a ULA of 2Mco−1 sensors centered at the
origin, with Mco > M [11]. Through redundancy averaging,
we can construct a new measurement vector z = Fr that
resembles a measurement vector of this ULA, where F ∈
R(2Mco−1)×M2

. The precise definition of F can be found in
[16]. Fig. 1 provides an illustrative example of the relationship
between the physical array, the difference coarray, and the
central ULA part of the difference coarray [16].

Through spatial smoothing, we can construct an augmented
covariance matrix Rss of the order Mco ×Mco, such that

Rss =
1

Mco

Mco∑
l=1

Γlzz
HΓTl , (5)

where Γl = [0Mco×(l−1) IMco×Mco
0Mco×(Mco−l)]. By apply-

ing MUSIC to Rss, more sources than the number of sensors
can be resolved. The MUSIC algorithm applied to Rss is
referred as SS-MUSIC [11].

In the derivations above, we assume that each sensor is
perfectly calibrated and placed at its nominal position, which
may not be true in practice. To obtain a more general pertur-
bation model, we consider sensor location errors along both
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the x-axis and the y-axis1. We use u = [u1, u2, . . . , uM ]T

to denote the sensor locations errors along the x-axis, and
v = [v1, v2, . . . , vM ]T to denote the sensor location errors
along the y-axis. The perturbed sensor locations are then given
by D̃ = {(d1 + u1, v1), (d2 + u2, v2), . . . , (dM + uM , vM )}.
When the sensor location errors are large, the linear array
structure will be completely destroyed, resulting large DOA
estimation errors that are difficult to characterize. Therefore,
our performance analysis will focus on cases when the sensor
location errors are small. In addition to assumptions A1–A3,
we make the following additional assumption:
A4 The sensor location errors are small compared with d0.

Let δ = [uT vT ]T denote the collection of sensor location
error parameters. Under assumption A1–A4, the N snapshots
received by the perturbed array can be expressed as

ỹ(t) = Ã(θ, δ)x(t) + n(t), t = 1, 2, . . . , N, (6)

where Ã(θ, δ) denotes the perturbed steering matrix. We name
(6) the deterministic error model, reflecting the fact that sensor
location errors do not change during the N snapshots.

One extension to the deterministic error model is the
stochastic error model, where the sensor location errors are
time-dependent. Such a model is applicable when the array
is mounted on a non-stationary surface (e.g. [28], [29]), and
the sensor location errors cannot be assumed constant during
the N snapshots. By replacing u, v and δ with their time-
dependent counterparts, we can express the N snapshots
received by the perturbed array as

ỹ(t) = Ã(θ, δ(t))x(t) + n(t), t = 1, 2, . . . , N. (7)

For both models, the covariance matrix will deviate from
the nominal one due to sensor location errors. If we neglect
the sensor location errors and follow the same procedure of
redundancy averaging and spatial smoothing as above, the
resulting augmented covariance matrix will be a perturbed
version of the nominal Rss, which will degrade the DOA
estimation performance. In the following sections, we will
analyze in detail how such degradations are related to the
sensor location errors.

It should be noted that there exists other coarray-based
MUSIC algorithms, such as DA-MUSIC [30]. Because DA-
MUSIC shares the same asymptotic MSE as SS-MUSIC [16],
the results in the following sections are also applicable to DA-
MUSIC. For other coarray-based MUSIC algorithms, our re-
sults are not directly applicable because the augmented covari-
ance matrix is constructed differently. For these algorithms, we
can view the construction process of the augmented covariance
matrix as a function that maps the original covariance matrix to
the augmented covariance matrix. If such a function is analytic,
we can obtain its Taylor series and analyze the effect of the
sensor location errors by following the ideas in [16] and the
following sections. However, the resulting expressions may
be more involved. To avoid complications, in the following
sections, we will focus on analyzing how sensor location errors
impact the DOA estimation performance of SS-MUSIC.

1We do not need to consider the perturbations along the z-axis under the
far-field and co-planar assumption of the source signals.

III. THE DETERMINISTIC ERROR MODEL

In the deterministic error model, the perturbed covariance
matrix is given by

R̃ = Ã(θ, δ)PÃH(θ, δ) + σ2
nI, (8)

where

Ãik = exp

[
j

2π

λ
(di sin θk + ui sin θk + vi cos θk)

]
.

The corresponding observation model of the difference coarray
is then given by

r̃ = (Ã∗ � Ã)p+ σ2
n vec(I). (9)

Here we drop the explicit dependencies on θ, δ for notational
simplicity. The matrix (Ã∗�Ã) now resembles a steering ma-
trix of the perturbed difference coarray, whose sensor locations
are given by D̃co = {(dm − dn + um − un, vm − vn)|m,n =
1, 2, . . . ,M}. As illustrated in Fig. 2, the perturbed differ-
ence coarray no longer embeds a ULA, and can no longer
be divided into multiple overlapping subarrays of the same
shape. Consequently, applying SS-MUSIC to the perturbed
difference coarray model without error compensations will
lead to degraded DOA estimation performance.

Physical array

Difference coarray

O

O

(a)

Perturbed physical array

Perturbed difference coarray

O

O

(b)

Fig. 2. Illustration of a perturbed difference coarray: (a) a co-prime array
and its difference coarray; (b) a perturbed co-prime array and its perturbed
difference coarray.

To establish the link between the coarray perturbation and
the DOA estimation errors, we start with the perturbed steering
matrix Ã. Because Ã is analytic in the neighborhood of δ = 0,
we can linearize Ã around δ = 0 via the first-order Taylor
expansion under assumption A4:

Ã = A+UÃu + V Ãv + o(δ), (10)
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where

U = diag(u1, u2, . . . , uM ), (11a)
V = diag(v1, v2, . . . , vM ), (11b)

Ãu = j
2π

λ
ADs, (11c)

Ãv = j
2π

λ
ADc, (11d)

Ds = diag(sin θ1, sin θ2, . . . , sin θK), (11e)
Dc = diag(cos θ1, cos θ2, . . . , cos θK), (11f)

and o(δ) denotes the higher order terms with respect to δ. The
perturbed covariance matrix R̃ can then be approximated as

R̃ =R+UÃuPA
H +APÃH

u U+

V ÃvPA
H +APÃH

v V + o(δ).
(12)

In practice, the true covariance matrix is unknown, and we
obtain only the estimate of R̃ with R̂ = 1

N

∑N
t=1 y(t)y(t)H .

Hence, the discrepancy between the estimate, R̂, and nominal
covariance matrix, R, can be decomposed into two parts:

∆R = R̂−R = (R̂− R̃)︸ ︷︷ ︸
E

+ (R̃−R)︸ ︷︷ ︸
G

, (13)

where E denotes the estimation errors resulting from finite
snapshots, and G denotes the estimation errors resulting
from sensor location errors. To derive the asymptotic MSE
expression of SS-MUSIC in the presence of sensor location
errors, we make use of the following theorem [16].

Theorem 1. Let θ̂(SS)k be the estimated value of the k-th
DOA by SS-MUSIC, and ∆r = vec(∆R). Denote the number
of virtual sensors in the central ULA part of the difference
coarray Dco by 2Mco − 1. If ∆R is Hermitian, then for
sufficiently small ∆r, the DOA estimator error of SS-MUSIC
is given by

∆θk := θ̂
(SS)
k − θk = −(γkpk)−1<(ξTk ∆r) + o(‖∆r‖), (14)

where

ξk = F TΓT (βk ⊗αk), (15a)

αTk = −eTkA†co, (15b)

βk = Π⊥Aco
ȧco(θk), (15c)

γk = ȧco(θk)HΠ⊥Aco
ȧco(θk), (15d)

Γ = [ΓTMco
ΓTMco−1 · · · ΓT1 ]T , (15e)

ȧco(θk) =
∂aco(θk)

∂θk
. (15f)

Here Aco is the steering matrix of a Mco-sensor ULA
whose sensor locations are given by {0, d0, . . . , (Mco−1)d0},
Γi = [0Mco×(i−1) IMco×Mco 0Mco×(Mco−i)] follows the same
definition as in (5), and F follows the same definition as in
[16, Appendix A].

It is straightforward to verify that R̂ is still Hermitian in
the presence of sensor location errors. Combining (13) and
Theorem 1 and neglecting all the high order terms, we obtain

∆θk
.
= −(γkpk)−1<[ξTk (e+ g)], (16)

where .
= denotes equality up to the first order, e = vec(E),

and g = vec(G). Hence, for a large number of snapshots, the
asymptotic MSE can be evaluated as

E[∆θ2k]
.
=

E{[<(ξTk (e+ g))]2}
γ2kp

2
k

. (17)

Using the fact that <(AB) = <(A)<(B)−=(A)=(B), we
can expand the numerator in (17) as follows:

E{[<(ξTk (e+ g))]2}
=<(ξk)TE[<(e+ g)<(e+ g)T ]<(ξk)

+ =(ξk)TE[=(e+ g)=(e+ g)T ]=(ξk)

− 2<(ξk)TE[<(e+ g)=(e+ g)T ]=(ξk).

(18)

Because E[e] = 0, we have

E[<(e+ g)<(e+ g)T ] = E[<(e)<(e)T ] + <(g)<(g)T ,

E[=(e+ g)=(e+ g)T ] = E[=(e)=(e)T ] + =(g)=(g)T ,

E[<(e+ g)=(e+ g)T ] = E[<(e)=(e)T ] + <(g)=(g)T .

Hence we can expand (18) as (19). The first three terms
evaluate into <[ξHk (R̃ ⊗ R̃T )ξk]/N . The derivation follows
the same idea as in [16, Appendix C], but with R replaced
with R̃. The second three terms can be combined into
<(gT ξk)T<(gT ξk). To obtain the final MSE expression, we
still need to expand g in terms of δ, which requires Lemma 1.

Lemma 1. Let D = diag(d) be a diagonal matrix. Then
vec(DX) = (XT � I)d and vec(XD) = (I �X)d for any
matrix X with a proper shape.

Proof. The two equalities follow immediately from the follow-
ing fact [31]: for any diagonal matrix X and any two matrices
A, B with proper shapes,

vec(AXB) = (BT �A) diag(X). (20)

Using Lemma 1 and (12), we can rewrite g as Bδ + o(δ),
where B = [Bu Bv] and

Bu = I � (APÃH
u ) + (APÃH

u )∗ � I, (21a)

Bv = I � (APÃH
v ) + (APÃH

v )∗ � I. (21b)

Substituting the expression for g back into (19), we obtain the
following result.

Corollary 1. Under the deterministic error model, the asymp-
totic MSE of SS-MUSIC for the k-th DOA in the presence of
small sensor location errors is given by

1

p2kγ
2
k

{
1

N
<[ξHk (R̃⊗ R̃T )ξk] + [δT<(BT ξk)]22

}
, (22)

where ξk and B follow the same definition in Theorem 1 and
(21a)–(21b).

The asymptotic MSE (22) consists of two terms. The first
term results from the estimation errors of the covariance
matrix, which will vanish as the number of snapshots goes to
infinity. It should be also noted that this term is also affected by
the sensor location errors, because R̃ depends on δ. However,
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E{[<(ξTk (e+ g))]2} =<(ξk)TE[<(e)<(e)T ]<(ξk) + =(ξk)TE[=(e)=(e)T ]=(ξk)− 2<(ξk)TE[<(e)=(e)T ]=(ξk)

+ <(ξk)T<(g)<(g)T<(ξk) + =(ξk)T=(g)=(g)T=(ξk)− 2<(ξk)T<(g)=(g)T=(ξk)

=<[ξHk (R̃⊗ R̃T )ξk]/N + <(gT ξk)T<(gT ξk)

(19)

given a sufficient number of snapshots N , such an effect is
negligible after being divided by N . The second term is the
result from sensor location errors, which will not vanish as
the number of snapshots goes to infinity, leading to a constant
bias among the DOA estimates.

Corollary 1 gives the asymptotic MSE for a particular
realization of the sensor locations errors, δ. We are also
interested in the ensemble behavior of (22) under different
realizations of sensor location errors. Following the idea of
the hybrid CRB, we assume that the sensor location errors
δ follows a Gaussian prior N (0,C) [32], and evaluate the
average asymptotic MSE under this Gaussian prior. The results
are summarized in Corollary 2.

Corollary 2. Let δ ∼ N (0,C), where ‖C‖ is sufficiently
small such that the high order moments of δ/d0 are o(‖C‖).
Then then the average asymptotic MSE (AAMSE) of SS-
MUSIC in the presence of sensor location errors is given by

1

p2kγ
2
k

{
1

N
<[ξHk (R⊗RT )ξk] + <(BT ξk)TC<(BT ξk)

}
,

(23)

Proof. Let ∆ = UÃuPA
H + APÃH

u U + V ÃvPA
H +

APÃH
v V . Using (12), we have

R̃⊗ R̃T = R⊗RT +R⊗∆T + ∆⊗RT + o(‖C‖).

Because Eδ[∆] = 0, using the assumption that the high order
moments of δ/d0 are o(‖C‖), we obtain Eδ[R̃⊗ R̃T ]

.
= R⊗

RT . This leads to the first term in (23). The second term in
(23) is due to the fact that Eδ[δδT ] = C. The remaining high
order terms are still o(‖C‖) under the assumption that that
the high order moments of δ/d0 are o(‖C‖).

Because the second error term in (23) is linear in C, we
can use <(BT ξk)T<(BT ξk) as a sensitivity metric of the
robustness of SS-MUSIC against the sensor location errors for
the k-th DOA. It can be observed that this term is affected by
both the physical array geometry and the coarray geometry.
The physical array geometry is encoded in the matrix B,
which depends on the nominal physical array steering matrix
A. The coarray geometry is encoded in the vector ξk, which
depends on the coarray steering matrix Aco as well as the
transform matrix F . This observation implies that even if two
sparse linear arrays share the same coarray structure, their
sensitivities against model errors may not be the same.

Corollary 3. Assume all sources share the same power p.
Let ε(θk) denote the AAMSE of the k-th DOA in Corollary 2.
Fixing σ2

n, we have

lim
p→∞

ε(θk) =
1

γ2k

{
1

N
‖ξHk (A⊗A∗)‖22

+ <(B̄T ξk)TC<(B̄T ξk)

}
,

(24)

where B̄ = [B̄u B̄v], and

B̄u = I � (AÃH
u ) + (AÃH

u )∗ � I,
B̄v = I � (AÃH

v ) + (AÃH
v )∗ � I.

Proof. The result follows directly from Corollary 2 and [16,
Corollary 1].

The first term in (24) is the limiting expression of the
asymptotic MSE of SS-MUSIC in the absence of sensor
location errors as the SNR approaches infinity, which is
generally non-zero when multiple sources are present [16]. The
second term in (24) is the result from sensor location errors.
Because B̄ is independent of the source power p, we conclude
that the DOA estimation bias of SS-MUSIC introduced by the
sensor location errors cannot be mitigated by increasing the
SNR alone.

IV. EXTENSION: THE STOCHASTIC ERROR MODEL

In the stochastic error model, we assume that the location
errors vary in each snapshot, such that the t-th snapshot is
given by

ỹ(t) = Ã(δ(t))s(t) + n(t), (25)

in which δ(t) follows some stochastic model. To avoid com-
plications and obtain a general idea of the impact of stochastic
sensor location errors, we make the following additional
assumption:
A5 The sensor location errors δ(t) are i.i.d. and are uncorre-

lated from both the source signals s(t) and the additive
noise n(t).

Because Ã(δ(t)) is nonlinear in the random variable δ(t), ỹ
no longer follows the complex circularly-symmetric Gaussian
distribution as in the deterministic error model. Consequently,
it is rather difficult to derive the distribution of R̂ for the
stochastic error model in the case of a finite number of
snapshots. On the other hand, as implied by (13), the effect
of sensor location errors dominates only when the number
of snapshots is sufficiently large. Hence for the stochastic
error model, we will analyze how the sensor location errors
affect the estimation performance when an infinite number of
snapshots is available.

Under assumption A1–A4, the perturbed covariance matrix
can be evaluated as

R̃ =E[y(t)yH(t)]

=E[Ã(δ(t))s(t)sH(t)ÃH(δ(t))] + E[Ã(δ(t))s(t)nH(t)]

+ E[n(t)sH(t)ÃH(δ(t))] + E[n(t)nH(t)].

=E[Ã(δ(t))s(t)sH(t)ÃH(δ(t))]︸ ︷︷ ︸
S

+σ2
nI,
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where the cross terms vanish, because the sources and the
additive noise have zero means and are uncorrelated. The first
term S can be expressed as

S =

K∑
i=1

K∑
l=1

E[ã(θi, δ(t))si(t)s
∗
l (t)ã

H(θl, δ(t))],

whose (m,n)-th element is given by

Smn =

K∑
i=1

K∑
l=1

E[ãm(θi, δ(t))ã∗n(θl, δ(t))si(t)s
∗
l (t)]. (26)

Using assumption A5, we can decouple the expectation evalua-
tions with respect to δ(t) and s(t). Noting that E[si(t)s

∗
l (t)] =

pl only if i = l, and is otherwise 0, we need to consider only
the terms where i = l. We can then rewrite (26) as

Smn =

K∑
k=1

piE[ãm(θk, δ(t))ã∗n(θk, δ(t))]

=

K∑
k=1

piam(θk)a∗n(θk)E
{
ej(tk,m−tk,n)

T δ
}

=

K∑
k=1

piam(θk)a∗n(θk)φδ(tk,m − tk,n),

(27)

where φδ(t) is the characteristic function of δ(t), tk,n =

2π
λ

[
e
(n)
M sin θk

e
(n)
M cos θk

]
, and e(n)M is an M -dimensional vector with

only the n-th element being one and other elements being
zero. Let Φk be an M ×M matrix whose (m,n)-th element
is given by φδ(tk,m − tk,n). We can then express R̃ as

R̃ =

K∑
k=1

pk[a(θk)aH(θk)] ◦Φk + σ2
nI. (28)

Here, the effect of the sensor location errors is encoded in
matrices Φk. Because tk,m depends on the k-th DOA, the
effect of sensor location errors is generally DOA dependent
and cannot be treated as colored Gaussian noise.

Vectorizing the (28) leads to

r̃ = [(A∗ �A) ◦Φ]p+ σ2
n vec(I), (29)

where Φ = [vec(Φ1) vec(Φ2) · · · vec(ΦK)]. Comparing
(29) with (4), we observe that, under the stochastic error
model, the coarray steering matrix (A∗�A) is modulated by
Φ. Because characteristic functions usually do not evaluate to
one outside the origin, Φ will not be a matrix of ones and the
corresponding difference coarray model will be perturbed.

To give a better idea of (28) and (29), we consider the
case when δ(t) follows a zero-mean Gaussian distribution
with the covariance matrix denoted by C. We partition C
as
[
Cuu Cuv
Cvu Cvv

]
, where Cuu and Cvv are the covariance of

the location errors along the x-axis and y-axis, respectively,
and Cuv denotes the corresponding cross covariance. The
corresponding characteristic function of δ(t) is then given by
φδ(t) = exp(−1/2tTCt). Substituting tk,n into φδ(t) and

expanding the terms in the exponent, we obtain that in the
Gaussian case

Φk(m,n) = exp
{
− 2π2

λ2
[µ1(m,n) sin2 θk + µ2(m,n) cos2 θk

+ 2µ3(m,n) sin θk cos θk]
}
,

(30)

where

µ1(m,n) = Cuu(m,m) + Cuu(n, n)− 2Cuu(m,n),

µ2(m,n) = Cvv(m,m) + Cvv(n, n)− 2Cvv(m,n),

µ3(m,n) = Cuv(m,m) + Cuv(n, n)− Cuv(m,n)− Cuv(n,m).

We also observe that Φk(m,n) is still dependent on the
k-th DOA. Hence for a general covariance matrix, the effect
of the random sensor location errors is still DOA dependent.
However, as shown in the following proposition, for certain
covariance matrices, Φk(m,n) is independent of k.

Proposition 1. Let δ(t) ∼ N (0,C). Then Φk (k =
1, 2, . . . ,K) are independent of the DOAs if and only if
µ1(m,n) = µ2(m,n) and µ3(m,n) = 0 holds for every
m,n = 1, 2, . . . ,M .

Proof. Let a, b, c ∈ C. Define f(θ) = a sin2 θ + b cos2 θ +
c sin θ cos θ. It suffices to show that f(θ) is a constant for all
θ ∈ (−π/2, π/2) if and only if a = b and c = 0.

The sufficiency is trivial and we need to show only neces-
sity. Suppose f(θ) = d,∀θ ∈ (−π/2, π/2). Choose θ = π/4
and we obtain a + b + c = 2d. Choose θ = −π/4 and we
obtain a+ b− c = 2d. Therefore c must be 0. Choose θ = 0
and we obtain b = d, which implies that (a − b) sin2 θ = 0
must hold for every θ ∈ (−π/2, π/2). Therefore we must have
a = b.

One special case that satisfies the conditions given in
Proposition 1 is when C = σ2

pI , which leads to the following
corollary.

Corollary 4. Let δt ∼ N (0, σ2
pI). Then

R̃ = C1

{
APAH +

1

C1

[
σ2
n + (1− C1)

K∑
k=1

pk

]
I
}
, (31)

where C1 = exp(−4π2σ2
p/λ

2).

Proof. The expression (31) can be obtained by substituting
C = σ2

pI into (30) and simplifying the resulting R̃ according
to (28).

We observe that if the sensor location perturbations are i.i.d.
zero-mean Gaussian with the same variance, the effect of the
sensor location errors can be indeed modeled as additive white
noise as the number of snapshots goes to infinity. The signal
subspace remains unchanged. However, the effective SNR is
decreased because 0 < C1 < 1. In this special case, we can
approximate the asymptotic MSE of SS-MUSIC for the k-th
DOA with <[ξHk (R⊗RT )ξk]/(Nγ2kp

2
k), but with the original

noise variance σ2
n replaced with the “effective noise variance”

1

C1

[
σ2
n + (1− C1)

K∑
k=1

pk

]
.
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V. THE CRAMÉR RAO BOUND

The CRB gives the lower bound on the minimum vari-
ance an unbiased estimator can achieve. In this section, we
derive the CRB for general sparse linear arrays under the
deterministic error model. In addition to the DOAs, source
powers, and noise power, we also treat sensor location errors
as unknown parameters. To obtain a more general expression
of the FIM, we assume that the precise sensor locations are
partially known. This assumption includes the case when
sensor location errors among all the sensors are unknown.
Let {i1, i2, . . . , iM1} ⊆ {1, 2, . . . ,M} denote the indices
of sensors with unknown location errors along the x-axis,
and {l1, l2, . . . , lM2

} ⊆ {1, 2, . . . ,M} denote the indices of
sensors with unknown location errors along the y-axis. The
collection of unknown parameters is given by the (2K+M1+
M2 + 1)× 1 real vector:

η = [θT ,pT , ui1 , · · · , uiM1
, vl1 , · · · , vlM2

, σ2
n]T . (32)

The FIM is then given by:

Proposition 2. Under assumptions A1–A3, the FIM of the
deterministic error model is give by

J = NMH(R̃T ⊗ R̃)−1M . (33)

Here,

M =

[
∂r̃

∂θ

∂r̃

∂p

∂r̃

∂u

∂r̃

∂v

∂r̃

∂σ2
n

]
, (34)

where
∂r̃

∂θ
= (Ã∗θ � Ã+ Ã∗ � Ãθ)P , (35a)

∂r̃

∂p
= Ã∗ � Ã, (35b)

∂r̃

∂u
= [(ÃP ÃH

u )∗L1]�L1 +L1 � (ÃP ÃH
u L1), (35c)

∂r̃

∂v
= [(ÃP ÃH

v )∗L2]�L2 +L2 � (ÃP ÃH
v L2), (35d)

∂r̃

∂σ2
n

= vec(IM ), (35e)

and
L1 = [e

(i1)
M e

(i2)
M · · · e(iM1

)

M ],

L2 = [e
(l1)
M e

(l2)
M · · · e(lM2

)

M ],

Ãθ =

[
∂ã(θ1)

∂θ1

∂ã(θ2)

∂θ2
· · · ∂ã(θK)

∂θK

]
.

Proof. See Appendix A.

If the FIM is nonsingular, the CRB for the DOAs can be
readily obtained by inverting the FIM. However, this CRB does
not always exist, due to the potential ambiguities introduced
by sensor location errors. In the presence of sensor location
errors, it is possible that certain combinations of DOAs, θ,
and sensor location errors, δ, lead to the same perturbed
steering matrix and same observations. Consequently, it is
impossible to distinguished between these combinations from
the observations. For a perturbed steering matrix, we formally
define the local ambiguity as follows:

Definition 2. An perturbed steering matrix A(θ, δ) is called
locally ambiguous if for any (θ, δ) ∈ Θ × ∆, there exists
a non-empty neighborhood U ⊂ Θ ×∆, such that for any
(θ̃, δ̃) ∈ U , A(θ̃, δ̃) = A(θ, δ).

In practice, the first sensor is usually chosen as the reference
sensor, whose location is assumed known. However, this is
not sufficient to eliminate the local ambiguity, because the
perturbed steering matrix remains the same if we rotate the
array by a small angle and shift all the DOAs by the same
amount. Even if we restrict the perturbation along the x-axis
only, the local ambiguity still exists because we can obtain
the same steering matrix by expanding or shrinking the whole
array along the x-axis by a small amount and adjusting the
DOAs accordingly. When such local ambiguities exist, the set
of unknown parameters will be locally unidentifiable, leading
to a singular Fisher information matrix (FIM) [33]. In the
following discussion, we assume that the FIM is nonsingular.

Unlike the CRB derived in [32, Ch. 8], our CRB utilizes the
assumption that the sources are uncorrelated. Observing that
(R̃T ⊗ R̃)−1 is always full rank in the noisy case, the FIM is
non-singular if and only if M is full rank. Because M is a
matrix of dimension M2×(2K+M1+M2+1), the FIM (33)
can remain nonsingular for up to O(M2) sources. Therefore
our CRB can work in the underdetermined case when K > M ,
while the CRB in [32] cannot. Our derivation is also different
from that in [34]. In [34], the FIM is evaluated partition by
partition under the assumption that both the source powers
and the noise power are known. In our derivation, the FIM is
derived in a “factorized” form, which is more concise than that
in [34]. In addition, using our derivation, we conclude that the
FIM can remain nonsingular for up to O(M2) sources. This
conclusion is not easily seen from the derivation in [34].

Because the FIM (33) shares a form similar to the location
error free FIM in [16], it is straightforward to show that the
corresponding CRB depends on the SNRs instead of absolute
values of pk or σ2

n. For sparse linear arrays, we are particularly
interested in the underdetermined case when K ≥ M . In
[16], we have shown that the location error free CRB remains
positive definite even if the SNR approaches infinity. This
unusual behavior still exists in the presence of sensor location
errors. If both Ã and M are full rank, R̃T ⊗ R̃ remains
full rank as σ2

n approaches 0, and the resulting FIM remains
positive definite. Hence the Schur complement corresponding
to the DOAs is also positive definite, leading to a positive
definite CRB matrix. This behavior puts a strictly positive
lower bound on the MSE of all unbiased estimators when
K ≥M .

VI. NUMERICAL RESULTS

In this section, we use numerical simulations to demon-
strate how sensor location errors affect the DOA estimation
performance for sparse linear arrays. We consider both the de-
terministic error model and the stochastic error model. Unlike
ULAs, sparse linear arrays sharing the same number of sensors
can have different structures. For a comprehensive comparison,
we consider two sets of sparse linear arrays throughout the
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simulations. The first set consists of four different sparse linear
arrays sharing the same number of sensors:
• Co-prime (3,5): [0, 3, 5, 6, 9, 10, 12, 15, 20, 25]d0;
• MRA 10 [35]: [0, 1, 4, 10, 16, 22, 28, 30, 33, 35]d0;
• Nested (4,6): [0, 1, 2, 3, 4, 9, 14, 19, 24, 29]d0;
• Nested (5,5): [0, 1, 2, 3, 4, 5, 11, 17, 23, 29]d0.

The second set consists of four different sparse linear arrays
sharing the same aperture:
• Co-prime (2,3): [0, 2, 3, 4, 6, 9]d0;
• MRA 5 [35]: [0, 1, 2, 6, 9]d0;
• Nested (1,5): [0, 1, 3, 5, 7, 9]d0;
• Nested (4,2): [0, 1, 2, 3, 4, 9]d0.

Throughout all experiments, we define the SNR as follows:

SNR = 10 log10

mink=1,2,...,K pk
σ2
n

.

Given the results from L trials, we compute the empirical MSE
with

MSEem =
1

KL

L∑
l=1

K∑
k=1

(
θ̂
(l)
k − θ

(l)
k

)2
,

where θ(l)k is the k-th DOA in the l-th trial, and θ̂
(l)
k is the

estimate of θ(l)k .

A. Numerical Analysis of the Deterministic Error Model

We begin by verifying our closed-form asymptotic MSE
expression (23) for the deterministic error model via numerical
simulations. We consider 11 sources, which is more than the
number of sensors, uniformly distributed between −π/3 and
π/3 with equal power. We set the SNR to 0dB. We generate the
sensor location errors from a zero-mean Gaussian distribution
with covariance matrix σ2

pI . The magnitude of sensor location
errors can then be tuned with σ2

p. We consider the first set
of sparse linear arrays. We compute the difference between
the AAMSE given by (23) and the empirical MSE under
different combinations of snapshot numbers and magnitudes
of perturbations. The results are summarized in Fig. 3. It can
be observed that the empirical results agree very well with our
analytical results when the number of snapshots is above 200
and the perturbation level is below 0.05. When the number
of snapshots is small, the asymptotic assumption no longer
holds, and the discrepancy between our analytical results and
the empirical results becomes evident. When the magnitude of
the sensor location errors is large, the high order terms with
respect to the sensor location errors are no longer negligible,
leading to discrepancies between our analytical results and the
empirical results.

We next demonstrate how the DOA estimation errors vary
with respect to sensor location errors for different types of
sparse linear arrays. The results are plotted in Fig. 4 and Fig. 5.
In Fig. 4, we plot the RMSE vs. σp/d0 for four different
sparse linear arrays with the same number of sensors. We
observe that the MRA achieves the lowest RMSE, the co-
prime array achieves the highest RMSE, and the two nested
arrays sit in the middle. This observation reflects the fact
that the MRA has the largest aperture among the four arrays,
while the co-prime array has the smallest. In Fig. 5, we

plot the RMSE vs. σp/d0 for four different sparse linear
arrays with the same aperture. We observe that while all four
arrays show similar performance, MRA 5 is least sensitive
to sensor location errors. Another interesting observation is
that, Nested (1,5), Nested (4,2), and MRA 5, despite sharing
the same central ULA part in their difference coarrays, show
different sensitivities with respect the sensor location errors.
This observation agrees with our analysis of (23).

Finally, we show how the variance of sensor location errors,
σp, affects the MSE of SS-MUSIC in high SNR regions. We
consider 6 sources evenly placed between −π/3 and π/3, and
fix the number of snapshots to 5000. Fig. 6 plots the results
for Co-prime (3,5). We observe that the empirical MSEs well
agree with our theoretical results. In the absence of sensor
location errors, the MSE of SS-MUSIC converges to a positive
constant as the SNR approaches infinity, which agrees with
our analysis of Corollary 3. As the variance of sensor location
errors increase, this positive constant also increases, because
the bias resulting from sensor location errors grows larger.
Additionally, we observe that the gap between the MSE values
when the sensor location errors are present and when they
are not present does not decrease as the SNR increases. This
observation confirms our analysis of (23) that the bias cannot
be mitigated by increasing only the SNR.

B. Numerical Analysis of the Stochastic Error Model
In this subsection, we verify our derivations in Section IV

via numerical simulations. For the first set of sparse linear
arrays, we consider 11 sources evenly distributed between
−π/3 and π/3. For the second set of sparse linear arrays, we
consider 6 sources evenly distributed between −π/3 and π/3.
For both sets of sparse linear arrays, the number of sources
is chosen to be larger than or equal to the number of sensors.
We sample the sensor location errors δ(t) from a zero-mean
Gaussian distribution with covariance matrix σ2

pI , and the
standard deviation of sensor location errors, σp, is fixed to
0.1d0. Because the sensor location errors are i.i.d. zero-mean
Gaussian, we approximate the analytical MSE by evaluating
the location error free asymptotic MSE of SS-MUSIC [16]
with the noise power replaced with the “effective noise power”
given by Corollary 4. We fix the SNR to 0dB and vary the
number of snapshots.

The results are plotted in Fig. 7 and Fig. 8. We observe that,
when the number of snapshots is small, the empirical MSE
deviates from the analytical MSE. As the number of snapshots
increases, the empirical MSE approaches the our analytical
approximation. This is because our analytical approximation
is based on the assumption of infinite number of snapshots.
In Fig. 7, we observe that the MRA, which has the largest
aperture, achieves the lowest MSE. The co-prime array, which
has the smallest aperture, has higher MSE than the MRA and
two nested arrays. In Fig. 8, we observe that the MSE of
the co-prime array is significantly higher than the other three
arrays. This is because the co-prime array is the only array
among the four arrays whose difference coarray is not a full
ULA. Consequently, the central ULA part of the co-prime
array is the smallest among the four, resulting a significantly
higher MSE.
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Fig. 3. |MSEan−MSEem|/MSEem for different types of arrays under different numbers of snapshots and different magnitudes of perturbations. The results
are averaged from 3000 trials.
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Fig. 4. RMSE vs. perturbation level for four different sparse linear arrays
with the same number of sensors. The empirical results are averaged from
1000 trials.
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Fig. 5. RMSE vs. perturbation level for four different sparse linear arrays
with the same aperture. The empirical results are averaged from 1000 trials.

C. Numerical Results of the CRB

We close this section with numerical results of the CRB we
derived in Section V. We demonstrate that the CRB obtained
from Proposition 2 is indeed achievable in cases when the
number of sources is greater than the number of sensors. We
consider 11 sources evenly distributed between −π/3 and π/3
and fix the number of snapshots to 5000. We consider the first
set of sparse linear arrays with the same number of sensors.
We compare the CRB and the empirical MSE obtained by
solving the following stochastic maximum likelihood problem
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Fig. 6. RMSE vs. SNR for Co-prime (2,3) under different perturbation levels.
The empirical results are averaged from 1000 trials.
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Fig. 7. Empirical RMSEs vs. analytical approximations under different
numbers of snapshots for four different sparse linear arrays with the same
number of sensors, based on the stochastic error model. The empirical results
are averaged from 5000 trials.

using the optimization toolbox in MATLAB:

min
θ,p,σ2

n,δ
log det(R̃(θ,p,σ2

n, δ)) + tr(R̃−1(θ,p,σ2
n, δ)R̂),

where R̃(θ,p,σ2
n, δ) follows the definition in (8).

The results are plotted in Fig. 9. For comparison, we also
include the CRB without considering sensor location errors
[16]. We first notice that the CRB converges to a positive
constant as SNR increases, which agrees with our analysis
of the CRB in the underdetermined case in Section V. We
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Fig. 8. Empirical RMSEs vs. analytical approximations under different
numbers of snapshots for four different sparse linear arrays with the same
aperture, based on the stochastic error model. The empirical results are
averaged from 5000 trials.

then observe that, given sufficient SNR, the MSE of the MLE
indeed achieves the CRB for all four arrays. Additionally, there
is a significant gap between the values of the CRB when the
sensor location errors are considered and when they are not.
This gap shows that unknown sensor location errors have a
drastic impact on the achievable DOA estimation performance
of sparse linear arrays.

VII. CONCLUDING SUMMARY

We statistically analyzed the performance of SS-MUSIC in
the presence of sensor location errors for general sparse linear
arrays. We derived a closed-form expression of the asymptotic
MSE of SS-MUSIC in the presence of small and deterministic
sensor location errors, as well as the CRB for joint estimation
of DOAs and sensor location errors. We also gave a brief
extension of our results to the stochastic sensor location error
model, and analyzed the Gaussian case. Our results will benefit
future research on the development of robust DOA estimators
using sparse linear arrays and the optimal design of sparse
linear arrays. When investigating the case of the stochastic
error model, we assumed that the time-variant sensor location
errors are i.i.d. This assumption, while providing convenience
in statistical analysis, may not hold in practice. In the future,
we will extend our analysis for the stochastic error model
by introducing motion models for the sensor location errors
and utilizing the tools in semiparametric modeling. It would
also be of great interest to further analyze the CRB for joint
estimation of DOAs and sensor location errors.

APPENDIX A
DERIVATION OF THE FIM

The (m,n)-th element of the single snapshot FIM for the
observation model (6) is given by [2], [27]

Jmn = tr

[
∂R̃

∂ηm
R̃−1

∂R̃

∂ηn
R̃−1

]
.

Using the properties that tr(AB) = vec(AT )T vec(B), and
that vec(AXB) = (BT ⊗A) vec(X) [31], we can express
the FIM as (33).

To obtain the FIM, we need to evaluate the partial deriva-
tives in (34). The partial derivatives of r̃ with respect to θ, p,
and σ2

n have been derived in [16], [36], [37]. We will focus on
deriving the partial derivatives of r̃ with respect to the sensor
location errors, making use of the following lemma:

Lemma 2. Let A,B ∈ CM×K , e ∈ CM , and p ∈ CK . Then

(A� eeTB)p = (APBTe)⊗ e,
(eeTB �A)p = e⊗ (APBTe),

where P = diag(p).

Proof. For brevity, we show only the proof of the first equality.
The proof of the second equality follows the same idea. By the
definition of the Khatri-Rao product and the fact that a⊗b =
vec(baT ), the left hand side can be expressed as∑

i

pi(ai ⊗ eeT bi) =
∑
i

pi vec(eeT bia
T
i ). (36)

Because the Kronecker product follows the distributive rule,
the right hand side is given by(∑

i

piaib
T
i e
)
⊗ e =

∑
i

pi(aib
T
i e⊗ e)

=
∑
i

pi vec(eeT bia
T
i ),

(37)

which is equal to the left hand side.

Because the partial derivative of Khatri-Rao products fol-
lows the Leibniz rule, we have

∂r̃

∂ui
=

∂

∂ui
[(Ã∗ � Ã)p+ σ2

n vec(IM )]

=

(
∂Ã∗

∂ui
� Ã+ Ã∗ � ∂Ã

∂ui

)
p

=
{

[e
(i)
M (e

(i)
M )T Ã∗u]� Ã+ Ã∗ � [e

(i)
M (e

(i)
M )T Ãu]

}
p

(38)
By Lemma 2, we immediately obtain that

∂r̃

∂ui
= (Ã∗PÃT

ue
(i)
M )⊗ e(i)M + e

(i)
M ⊗ (ÃP ÃH

u e
(i)
M ). (39)

Combining (39) with the definition of the Khatri-Rao product
leads to (35c). The derivation of (35d) follows the same idea.
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