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Abstract—Sparse linear arrays, such as nested and co-prime
arrays, are capable of resolving O(M2) sources using only O(M)
sensors by exploiting their so-called difference coarray model.
One popular approach to exploit the difference coarray model is
to construct an augmented covariance matrix from the sample co-
variance matrix. By applying common direction-of-arrival (DOA)
estimation algorithms to this augmented covariance matrix, more
sources than the number of sensors can be identified. In this
letter, inspired by the optimal transport theory, we develop a
new approach to construct this augmented covariance matrix.
We formulate a structured covariance estimation problem that
minimizes the Bures-Wasserstein distance between the sample
covariance matrix and the subsampled augmented covariance
matrix, which can be either casted to a semi-definite program-
ming problem, or directly solved using gradient-based methods.
Our approach contributes to a new grid-less DOA estimation
algorithm for sparse linear arrays. Numerical examples show
that our approach achieves state-of-art estimation performance.

Index Terms—Direction-of-arrival estimation, sparse linear
arrays, co-prime and nested arrays, Wasserstein distance, convex
optimization

I. INTRODUCTION

D IRECTION-OF-ARRIVAL (DOA) estimation, which re-
covers the direction information of multiple incoming

waves using the measurements of sensor arrays, is one of
the major problems in array signal processing [1]–[3]. With
uniform linear arrays (ULAs), classical DOA estimation meth-
ods, such as MUtiple SIgnal Classification (MUSIC) [4], can
resolve up to M−1 sources using M sensors. With sparse lin-
ear arrays, such as minimum redundancy arrays (MRAs) [5],
[6], nested arrays [7], [8], and co-prime arrays [9]–[12], up to
O(M2) uncorrelated sources can be resolved using M sensors
by exploiting the difference coarray model.

Various DOA estimation algorithms can be applied to
exploit the difference coarray model. These methods can be
grouped into two categories: grid-based methods and grid-less
methods. Grid-based methods discretize the parameter space of
interest into a fine grid and recover the DOAs using sparse en-
forcing techniques [13]–[18]. On the contrary, grid-less meth-
ods do not require the parameters of interest lie on a predefined
grid. Therefore, their estimation errors are not limited by the
grid size. Many grid-less methods rely on the construction of
the covariance matrix of the difference coarray model, namely
the augmented covariance matrix, whose size is usually much
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larger than the sample covariance matrix of the physical array
model. Based on this augmented covariance matrix, more
sources than the number of sources can be resolved. Various
methods of constructing such an augmented covariance matrix
are developed based on spatial-smoothing [7], [19], nuclear-
norm minimization [20], maximum-likelihood function with
Toeplitz parameterization [21], asymptotic efficient covariance
fitting criterion [22], and virtual array interpolation [23].

In this letter, we explore a new way of constructing the
augmented covariance matrix inspired by the Wasserstein
distance between zero-mean Gaussians, which originates in the
optimal transport theory [24], [25]. The Wasserstein distance
between zero-mean Gaussians introduces a metric over the
space of covariance matrices. Using this metric, we formulate
a structured covariance matrix estimation problem to construct
the augmented covariance matrix, which can be cast to a semi-
definite programming (SDP) problem. We can then estimate
the DOAs based on the constructed augmented covariance
matrix. To our best knowledge, this is the first time optimal
transport theory has been applied to sparse linear arrays, which
opens up a new direction for developing DOA estimators for
such arrays. Our formulation provides a new grid-less and
regularization-free DOA estimation method for sparse linear
arrays that achieves state-of-art performance.

Notations: We use CN (µ,Σ) to denote a complex
circularly-symmetric Gaussian distribution whose mean is µ
and covariance is Σ. Given a matrix A, we use ‖A‖F to
denote its Frobenius norm. Given a Hermitian matrix H ,
H � 0 means H is positive semi-definite (PSD). We use
⊗, �, and ◦ to denote the Kronecker product, the Khatri-Rao
product, and the Hadamard product, respectively. We use Hn
and Tn to denote the set of n × n Hermitian and Toeplitz
matrices, respectively. Given a set of n× n matrices, Sn, we
use Sn+ to denote its subset of PSD matrices.

II. A REVIEW OF DIRECTION FINDING USING SPARSE
LINEAR ARRAYS

We consider an M -sensor sparse linear array whose sensors
are placed on a grid with grid size d0. We denote the sensor
locations by D = {d̄1d0, d̄2d0, . . . , d̄Md0}, where d̄i
are integers. Without loss of generality, we assume that the
first sensor is located at the origin (i.e., d̄1 = 0), and that
d̄1 < d̄2 < · · · < d̄M . Such a sparse linear array can be
viewed as a thinned ULA of M0 = d̄M + 1 sensors (note that
{d̄1, d̄2, . . . , d̄M} ⊆ {d̄1, d̄1 + 1, . . . , d̄M}). Assume that K
far-field narrow-band sources impinge on the array from the
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directions θ = [θ1, θ2, . . . , θK ]T . The N snapshots received
by the array can be expressed as

y(t) = SA0(θ)x(t) + n(t), t = 1, 2, . . . , N. (1)

Here x(t) denotes the source signals, and n(t) denotes the
additive noise. A0(θ) = [a0(θ1),a0(θ2), . . . ,a0(θK)] is the
steering matrix of an M0-sensor ULA, where

a0(θk) =
[
1 ej

2π
λ d0 sin θk · · · ej

2π
λ (M0−1)d0 sin θk

]
,

and λ denotes the wavelength of the carrier wave. S ∈
RM×M0 is a sensor selection matrix encoding the thinning
process, where Smn ∈ {0, 1} and Smn = 1 only if the n-th
sensor in the full ULA is selected as the m-th sensor in the
sparse linear array. Typically, the inter-element spacing d0 is
chosen to be λ/2 to avoid grating lobes.

We consider the stochastic model [26] and assume that the
sources are uncorrelated. Under this signal model,

1) The source signals, x(t) ∼ CN (0,P ), where P =
diag(p1, p2, . . . , pK) and pk denotes the power of the
k-th source;

2) The additive noise vectors, n(t), are independently and
identically distributed as CN (0, σIM );

3) Both the source signals and the noise are temporally
uncorrelated, and the source signals are uncorrelated from
the additive noise.

Consequently, y(t) are i.i.d. complex circularly-symmetric
Gaussians with mean zero and covariance R, where

R = E[yyH ] = SR0S
T = SA0PA

H
0 S

H + σIM . (2)

Here R0 = A0PA
H
0 + σI is the covariance matrix of an

M0-sensor ULA. Because A0 is the steering matrix of a ULA
and P is diagonal, R0 is a Toeplitz matrix.

Vectorizing R leads to

r = vec(R) = (S ⊗ S)(A∗0 �A0)P + σ vec(IM ). (3)

Here (S ⊗ S)(A∗0 � A0) can be viewed as the steering
matrix of a virtual array whose sensor locations are given
by Dco = {(d̄m − d̄n)d0|m,n = 1, 2, . . . ,M}. This virtual
array is usually referred as “different coarray”. Consequently,
r resembles a measurement vector of this difference coarray.
If md0 ∈ Dco ∀m = 0, 1, . . . ,M0 − 1, we say the difference
coarray is “hole-free”. It has been shown that, given the sample
covariance matrix R̂ = 1

N

∑N
t=1 y(t)yH(t), by exploiting

the difference coarray structure of “hole-free” a sparse linear
array, one can construct an augmented covariance matrix that
provides a good estimate of R0 [7]. Because M0 is typically
much larger than M , by applying MUSIC or other spectral
estimation algorithms, we can resolve many more sources than
the number of sensors.

Remark 1: Some sparse linear arrays, such as co-prime
arrays, are not “hole-free”, and only a smaller submatrix of
R0 can be estimated from R̂. As long as the size of this
submatrix is greater than M , more sources than the number
of sensors can still be resolved. For brevity, we consider only
“hole-free” arrays in the following discussion, which can be
easily extended to arrays that are not “hole-free”.

In general, the process of recovering R0 from R̂ can be
described with the following optimization problem:

min
R0

d(R̂,SR0S
T ) + L(R0), s.t. R0 ∈ C, (P1)

where d(·, ·) is some similarity measure defined over HM+ ,
L(R0) captures the regularization terms, and C denotes the
constraints.

One simple method of estimating R0 consists of only two
steps: redundancy averaging and direct augmentation [27]–
[29]. Denoting this estimatedR0 by R̂DA, it is straightforward
to show that R̂DA is the solution to (P1) by choosing d(·, ·)
as

dF(R1,R2) = ‖R1 −R2‖F , (4)

removing the regularization L(R0), and setting C = TM0 .
By apply MUSIC to R̂DA, we recover the DA-MUSIC al-
gorithm [19], [29]. One issue with R̂DA is that it is not
guaranteed to be PSD. To tackle this issue, spatial smoothing
(SS) instead of direct augmentation can be performed as the
second step. The resulting estimate, denoted by R̂SS, is equal
to R̂DAR̂

H
DA/M0. By apply MUSIC to R̂SS, we recover the

SS-MUSIC algorithm [7]. It is also possible to introduce
regularizations to further exploit the structure of R0. Because
R0 − σI is low-rank, one popular choice is the nuclear
norm [20], [30]. Additional constraints, such as the ones based
on correlation subspaces [31], [32], can be introduced if there
exists some prior knowledge on the source directions. It should
be noted that dF does not capture the geometry of the space of
covariance matrices. Therefore, DOA estimates obtained from
R̂DA or R̂SS are generally statistically inefficient [29].

Because y(t) follows a zero-mean complex Gaussian distri-
bution, another popular choice of d(·, ·) is the KL-divergence
between two zero-mean complex Gaussian distributions:

dKL(R1,R2) = tr(R−12 R1) + log
detR2

detR1
−M. (5)

After removing the constants and the regularization term, and
setting C = TM0

+ ∩HM0 , (P1) becomes

min
R0

tr((SR0S
T )−1R̂) + log det(SR0S

T ),

s.t. R0 ∈ TM0
+ ∩HM0 ,

(P2)

which corresponds to the maximum-likelihood based struc-
tured covariance estimation problem. The problem (P2) is
non-trivial, whose suboptimal solutions can be obtained via
fixed-point like iterations [21], [33]. To tackle the difficulty in
solving (P2), the authors of [16] and [22] suggested using the
following covariance fitting criterion instead of dKL:

dSPA(R1,R2) = ‖R−
1
2

2 (R1 −R2)R
− 1

2
1 ‖F . (6)

In [22], the authors showed that resulting optimization problem
can be converted to a SDP problem, which can be numerically
solved with off-the-shelf solvers such as SDPT3 [34].

III. WASSERSTEIN DISTANCE INSPIRED COVARIANCE
MATRIX ESTIMATION

In this section, we introduce our new Wasserstein distance
based approach, show its SDP formulation, and derive the
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gradients of the resulting optimization problem. Given two
probability distributions, µ and ν, on Rn, the Kantorovich’s
formulation of the optimal transport problem minimizes the
following objective function:

inf
q∈Q(µ,ν)

∫
Rn×Rn

‖x− y‖22dq(x,y), (7)

where the cost function is chosen to be ‖ · ‖2, Q(µ, ν) is
the set of joint probability distributions on Rn × Rn whose
marginals are given by µ and ν, respectively. The square root
of (7) defines the so-called 2-Wasserstein distance over the
probability distributions on Rn [24]. When both µ and ν are
proper zero-mean Gaussians1 with covariance matrix R1 and
R2, respectively, the optimization problem (7) has a closed-
form solution [35], d2WG(R1,R2), which is given by

d2WG(R1,R2) = tr
(
R1 +R2 − 2(R

1
2
1R2R

1
2
1 )

1
2

)
, (8)

where (·) 1
2 denotes the principal matrix square root2. It has

been shown that dWG(R1,R2) introduces a metric on Hn+,
namely the Bures-Wasserstein metric [36]. It is straightfor-
ward to verify that d2WG(R1,R2) is generally not equal to
d2WG(R1 − R2,0). Hence, d2WG(R1,R2) captures the non-
Euclidean geometry of covariance matrices.

Combining (P1) and (8), we can formulate a structured
covariance estimation problem while considering the geometry
of covariance matrices:

min
R0

tr
(
R̂+R− 2(R̂

1
2RR̂

1
2 )

1
2

)
,

s.t. R = SR0S
T ,R0 ∈ TM0

+ ∩HM0 .
(P3)

Note that R0 � 0 guarantees that R = SR0S
T � 0.

We next analyze the convexity of (P3). Here the constraint
set TM0

+ ∩ HM0 is a convex cone, and tr(R) is linear func-
tion of R0. Because that tr(X

1
2 ) is strictly convex when

X ∈ Hn+ [36], and that R̂
1
2RR̂

1
2 is a linear function of

R0, tr
(

(R̂
1
2RR̂

1
2 )

1
2

)
is convex in R0. Therefore, the opti-

mization problem (P3) is convex. More specifically, when the
array is “hole-free” and R̂ is positive definite, R̂

1
2SR0S

T R̂
1
2

defines a bijection. Consequently, (P3) is strictly convex and
admits a unique solution.

Analytically solving (P3) turns out to be non-trivial due to
the matrix square root operation. It has been shown in [35]
that d2WG(R1,R2) can be obtained by solving the following
optimization problem:

min
V

tr(R1 +R2 − V − V H), s.t.

[
R1 V
V H R2

]
� 0. (9)

Therefore, we can cast (P3) into the following SDP problem:

min
R0,V

tr(R̂+ SR0S
T − V − V H)

s.t.

[
SR0S

T V

V H R̂

]
� 0,R0 ∈ TM0

+ ∩HM0 ,
(P4)

1An n-dimensional complex circularly-symmetric Gaussian distribution
can be fully characterized by a 2n-dimensional real Gaussian distribution.
Therefore, similar results follow for complex R1 and R2 [35].

2Given a PSD matrix A with eigendecomposition EΛEH ,
where Λ = diag(λ1, . . . , λn), its principal matrix square root is

E diag(λ
1
2
1 , . . . , λ

1
2
n )EH .

which can be numerically solved via the interior-point
method [37], [38]. The optimization problem (P4) provides a
regularization free approach to estimate R0 from R̂, resulting
in a new grid-less method for underdetermined (K ≥ M )
DOA estimation using sparse linear arrays. When the number
of snapshots, N , is less than M , R̂ is rank-deficient. Never-
theless, (P4) can still estimate R0 in such cases. However, the
resulting estimates are generally rank-deficient.

The size of the SDP problem (P4) is similar to that of the
SDP formulation of SPA in [22]. Therefore, the worst case
(assuming M0 = M ) complexity of solving (P4) is O(M6.5

0 ),
which can be expensive for large sparse linear arrays.

Alternatively, we can directly reparameterize R0 by ex-
pressing it as the sum of 2M0 − 1 linear-independent ma-
trices [21]: R0 =

∑2M0−1
i=1 ciQi, where

Qi =


IM0

, i = 1,

I
(i−1)
M0

+ (I
(i−1)
M0

)T , 2 ≤ i ≤M0,

jI
(i−M0)
M0

− j(I(i−M0)
M0

)T , M0 < i ≤ 2M0 − 1,

where ci are coefficients to be estimated, I(i)M0
denotes the

M0×M0 matrix whose elements are zeros except for the i-th
upper diagonal (i.e., the (m,n)-th element of I(i)M0

is one only
if m−n = i). We can also replace the hard constraint,R0 � 0,
with a soft one using the log-barrier function, resulting in the
following unconstrained convex optimization problem:

min
c

tr
(
R̂+R− 2(R̂

1
2RR̂

1
2 )

1
2

)
− µ log detR0, (P5)

where µ > 0 controls the steepness of the log-barrier function.
To evaluate the gradient of this objective function with

respect to ci, we need to evaluate the gradients of following
three terms: tr(R), tr

(
−2(R̂

1
2RR̂

1
2 )

1
2

)
, and −µ log detR0,

which we denote as g(1)i , g(2)i , and g(3)i , respectively. By matrix
calculus [39], it is straightforward to show that:

g
(1)
i = tr(SQiS

T ), g
(3)
i = −µ tr(R−10 Qi).

Let V = (R̂
1
2RR̂

1
2 )

1
2 . Differentiating both side of V V =

R̂
1
2RR̂

1
2 leads to

∂V

∂ci
V + V

∂V

∂ci
= R̂

1
2SQiS

T R̂
1
2 , (10)

which is a Sylvester equation. Because V is positive definite
(note that the log-determinant term enforces positive definite-
ness), it admits the eigendecomposition V = EΛEH . Let
X = EH(∂V /∂ci)E. Because E is unitary, we can rewrite
(10) as

XΛ + ΛX = EHR̂
1
2SQiS

T R̂
1
2E.

Since Λ is a diagonal matrix, we can rewrite XΛ + ΛX as
(Λ11T + 11TΛ) ◦X , where 11T represents a square matrix
of ones with proper size. Noting that E is unitary, we have
tr(X) = tr(∂V /∂ci). Therefore,

g
(3)
i = −2 tr

(
(EHR̂

1
2SQiS

T R̂
1
2E) ◦ (Λ11T + 11TΛ)−1

)
The full gradient of (P5) with respect to ci is given by g(1)i +

g
(2)
i + g

(3)
i , and gradient-based methods can then be applied

to solve (P5).
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Fig. 1: (a) MSE vs. number of snapshots, N , for different DOA estimation methods, averaged from 3000 Monte Carlo trials;
(b) MSE vs. SNR for different DOA estimation methods, averaged from 3000 Monte Carlo trials; (c) CPU time vs. N1 for
three different algorithms. In (a) and (b), the solid lines with markers denote the MSEs, and the dashed line denotes the CRB.

Noting that g(1)i can be precomputed, the worst case com-
putational complexity is mainly determined by g(2)i and g(3)i .
Because eigendecomposition and matrix multiplication are
both O(n3) operations, g(2)i and g

(3)
i cost at most O(M3

0 )
operations. Because i ranges from 1 to 2M0 − 1, the worst
case computational complexity of gradient-based methods is
O(kM4

0 ), where k is the number of descent steps.
We close this section by considering an interesting case:

K = 1 and σ = 0. In such a case, R = pa(θ)a(θ) is a
rank one matrix parameterized by a single parameter, θ, and
R

1
2 =

√
p/Ma(θ)a(θ). Given the sample covariance matrix,

R̂, we have

min
θ

d2WG(R, R̂) ⇐⇒ min
θ

pM − p

M
tr
(

(aaHR̂aaH)
1
2

)
⇐⇒ max

θ
(aHR̂a)

1
2 tr

(
1√
M

(aaH)

)
⇐⇒ max

θ
aHR̂a,

which is the objective function of a conventional beam-
former [2]. This result gives a geometric interpretation of
the conventional beamformer. By maximizing aHR̂a, we
are finding the DOA that minimizes the Bures-Wasserstein
distance between the sample covariance matrix R̂ and the
structured covariance matrix R = pa(θ)aH(θ).

IV. NUMERICAL EXAMPLES

We consider a nested array generated by the parameter pair
(4, 4): [0, 1, 2, 3, 4, 9, 14, 19]d0. We uniformly place nine off-
grid sources, which is greater than the number of sensors,
within the range (−70π/219, 76π/219). We consider the
following methods to estimate R0:

1) SS: Spatial smoothing after redundancy averaging [29].
2) NN: Nuclear-norm regularized reconstruction [30]. As

suggested in the paper, we set the regularization param-
eter to 2.5× 10−3/((logN)2 logM).

3) SPA: Sparse and parametric approach [22].
4) WG: Solving the SDP formulation (P4).
5) WGGrad: Solving (P5) using gradient descent with back-

tracking . We set µ = 0.01 and stop when the relative
change in the objective function is less than 10−7.

Once R0 is estimated, the DOAs are obtained using root-
MUSIC [40]. For reference, we included the Cramér-Rao

bound (CRB) for sparse linear arrays [29], [41]–[43] for
comparison.

Fig. 1(a) plots the mean-squared errors (MSEs) of the
five methods and the CRB versus the number of snapshots,
where the signal-to-noise ratio (SNR) is set to 0 dB in all
trials. Fig. 1(b) plots the MSEs of the five methods and the
CRB versus the SNR, where the number of snapshots is
fixed to 50 in all trials. We observe that the performance
of WGGrad well agrees with that of WG in all cases. SPA
has the best overall performance because dSPA asymptotically
approximates the maximum-likelihood function [22], [44],
[45]. The performance of our proposed methods, WS and
WSGrad, closely matches that of the SPA, and is significantly
better than SS and NN.

To compare the CPU time of WS, WSG, and SPA, we con-
sider nested arrays generated by the parameter pair (N1, N1)
and vary N1 from 3 to 12. The number of snapshots, N , is
fixed to 50 in all trials. All trials are performed on a server with
an Intel Xeon E5-2650v3 CPU. We plot the results in Fig. 1(c).
We observe that as the size of the array grows, SPA and
WG consumes significantly more CPU time than WGGrad, as
predicted by our complexity analysis in Section III. Therefore,
it is computationally more efficient to use WGGrad when the
sparse linear array is large.

V. CONCLUDING REMARKS

In this letter, we proposed a new grid-less DOA estimation
algorithm based on the Bures-Wasserstein metric between
covariance matrices. We first construct an augmented covari-
ance matrix by minimizing the Bures-Wasserstein distance
between the sample covariance matrix and the subsampled
augmented covariance matrix, and then estimate the DOAs
by applying root-MUSIC to the augmented covariance matrix.
We showed that the minimization problem can be solved with
either SDP or gradient-based methods. It is observed through
numerical examples that our algorithm achieves state-of-art
DOA estimation performance. Our result will inspire further
research on the application of optimal transport theory to array
signal processing. Possible future research includes analyzing
the connection between our algorithm and the SPA algorithm
as well as developing more efficient numerical methods.
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