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Abstract—With uniform linear arrays (ULAs), subspace-based
direction of arrival (DOA) estimation algorithms, such as MUtiple
SIgnal Classification (MUSIC), can only resolve M − 1 sources
using M sensors. Sparse linear arrays, such as co-prime and
nested arrays, can identify up O(M2) uncorrelated sources
using only O(M) sensors when such DOA estimation algorithms
are applied to their difference coarray model. In our previous
work, we derived closed-form asymptotic mean-squared error
(MSE) expressions for two coarray based MUSIC algorithms
and analyzed the Cramér-Rao bound (CRB) in high signal-to-
noise ratio (SNR) regions, under the assumption of uncorrelated
sources. In this paper, we provide further analysis of the CRB
presented in our previous work, especially for co-prime and
nested arrays. We first establish the connection between two
CRBs, the CRB derived with the assumption that the sources are
uncorrelated, and the classical stochastic CRB derived without
this assumption. We show that they are asymptotically equal in
high SNR regions for uncorrelated sources. Next, we analyze
the behavior of the former CRB for co-prime and nested
arrays with a large number of sensors. We show the effect of
configuration parameters on this CRB and derive the optimal
configuration parameters for co-prime and nested arrays with
large number of sensors. We show that this CRB can decrease
at a rate of O(M−5) for large values of M , while this rate is
only O(M−3) for an M -sensor ULA. This finding theoretically
demonstrates that co-prime and nested arrays can achieve better
asymptotic estimation performance when the number of sensors
is a limiting factor. We also show that for a fixed aperture, co-
prime and nested arrays require more snapshots to achieve the
same performance as ULAs, showing the trade-off between the
number of spatial samples and the number of temporal samples.
Finally, we demonstrate our theoretical results with numerical
experiments.

Index Terms—Cramér-Rao bound, performance analysis,
sparse linear arrays, co-prime arrays, nested arrays

I. INTRODUCTION

D IRECTION-of-arrival (DOA) estimation is an important
topic in array signal processing, finding wide applica-

tions in radar and sonar [1]–[3]. Traditionally, a uniform linear
array (ULA) is deployed. Using classical subspace-based DOA
estimation algorithms, such as MUtiple SIgnal Classification
(MUSIC) [4]–[6], we can identify up to M − 1 sources
using M sensors. However, if the sources are uncorrelated,
sparse linear arrays, such as minimum redundancy arrays
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(MRAs) [7]–[9], co-prime arrays [10]–[17], and nested ar-
rays [18]–[25], can identify up to O(M2) uncorrelated sources
using only M sensors by exploiting their difference coarray
structure (e.g., applying MUSIC to the difference coarray
model).

Such an attractive property makes it very interesting to
analyze the statistical performance of sparse linear arrays that
utilize the difference coarray model. In [26]–[28], Stoica and
Nehorai conducted a thorough statistical performance analysis
of ULAs. The authors derived the closed-form asymptotic
mean-squared error (MSE) expression of the MUSIC estimator
and analyzed its asymptotic statistical efficiency. The same
authors also derived the Cramér-Rao bounds (CRBs) for both
the conditional model and the stochastic model, as well as
established their connections. In [29], Li et. al analyzed
the performance of common subspace-based DOA estimators
(e.g., MUSIC, root-MUSIC [5], and ESPRIT [30]) and derived
a unified MSE expression. However, these analyses are usually
based on the physical array model of ULAs. They cannot be
directly extended to sparse linear arrays where the difference
coarray model is utilized. In [31], the authors derived the CRB
for arbitrary arrays in the one-source case, and numerically
analyzed this CRB for various sparse linear arrays. In our
previous work [32], we derived closed-form asymptotic MSE
expressions of DA-MUSIC [33] and SS-MUSIC [18], two
commonly used MUSIC variants that utilize the difference
coarray model of sparse linear arrays. We also analyzed
the CRB derived with the assumption that the sources are
uncorrelated, where we demonstrated its unusual behavior in
high signal-to-noise ratio (SNR) regions when the number of
sources is greater than the number of sensors. It is worth noting
that, in [34] and [35], the authors independently discovered
the same phenomenon. Moreover, in [34], the authors showed
that this CRB can remain valid even if the number of sources
is greater than the number of sensors, which theoretically
explains why sparse linear arrays can identify up to O(M2)
uncorrelated sources using only M sensors.

In this paper, we will take another step and conduct further
analysis of the CRB presented in our previous paper [32]. In
Section II, we will provide a brief review of sparse linear ar-
rays, the stochastic signal model, and our CRB. In Section III,
we will establish the connection between our CRB and the
classical stochastic CRB [28], which is derived without the
assumption that the sources are uncorrelated. In Section IV, we
will analyze the behavior of our CRB for co-prime and nested
arrays with large number of sensors. We will analytically show
that this CRB can decrease at a rate of O(M−5) when the
number of sensors, M , is large and the number of source, K, is
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less than M . This result theoretically shows that co-prime and
nested arrays can achieve much better asymptotic performance
than ULAs with the same number of sensors. Additionally,
our analytical results give the optimal configuration parameters
for co-prime and nested arrays with large number of sensors.
Finally, we will use numerical examples to demonstrate our
theoretical results in Section V, and draw concluding remarks
in Section VI.

In this paper, we make use of the following notations.
Given a matrix A, we use AT , AH , and A∗ to denote
the transpose, the Hermitian transpose, and the conjugate of
A, respectively. We use Aij to denote the (i, j)-th element
of A, and ai to denote the i-th column of A. Let A =
[a1 a2 . . . aN ] ∈ CM×N , and we define the vectorization op-
eration as vec(A) = [aT1 a

T
2 . . . aTN ]T . We use ⊗, �, and ◦ to

denote the Kronecker product, the Khatri-Rao product (i.e., the
column-wise Kronecker product), and the Hadamard product
(i.e., the element-wise product), respectively. We denote by
<(A) and =(A) the real and the imaginary parts of A. If
A is a square matrix, we denote its trace by tr(A). We use
diag(a1, a2, . . . , an) to denote the diagonal matrix constructed
from the diagonal elements a1, . . . , an. Given a matrix A, we
use diag(A) to denote the column vector constructed from its
main diagonal. If A is full column rank, we define its pseudo
inverse as A† = (AHA)−1AH . We also define the projection
matrix onto the null space of A as Π⊥A = I −AA†.

II. A REVIEW OF THE COARRAY SIGNAL MODEL

We consider a sparse linear array whose sensors are placed
on a grid with grid size d0

1. We can denote the sensor locations
as D = {d̄1d0, d̄2d0, . . . , d̄Md0}, where d̄i are integers and
M denotes the number of sensors. Typical sparse linear arrays
include minimum redundancy arrays (MRAs) [7], [8], nested
arrays [18], co-prime arrays [11], and their extensions [15],
[22], [23].

Assume that K far-field narrowband source are impinging
on the array from the directions θ = [θ1, θ2, . . . , θK ]T . The
N snapshots received by the array can be expressed as

y(t) = A(θ)x(t) + n(t), t = 1, 2, . . . , N, (1)

whereA(θ), x(t), and n denote the steering matrix, the source
signals, and the additive noise, respectively. More specifically,
A(θ) = [a(θ1),a(θ2), . . . ,a(θK)], where

a(θk) =
[
ej

2π
λ d̄1d0 sin θk · · · ej

2π
λ d̄Md0 sin θk

]
, (2)

and λ denotes the carrier wavelength of the impinging signals.
To simplify notations in the following discussion, we define

ωk = (2πd0 sin θk)/λ and use ω = [ω1, ω2, . . . , ωK ]T

to represent the DOAs. Because there exists a one-to-one
mapping between ωk and θk for every θk ∈ (−π/2, π/2),
there is no loss of information. Typically, d0 is chosen to be
λ/2, and we have ωk ∈ (−π, π).

We adapt the stochastic model [28], where the following
assumptions are made:

1Alternatively, such a sparse linear array can be viewed as a thinned ULA
with d0 as its inter-element spacing

A1 Both the source signals and the noise are white circularly-
symmetric Gaussian.

A2 The source DOAs are distinct (i.e., ωk 6= ωl ∀k 6= l).
A3 The source signals and the noise are uncorrelated.
A4 The snapshots are temporally uncorrelated.

Additionally, we assume that the sources are uncorrelated.
Given the above assumptions, we can express the covariance
matrix as

R = E[y(t)yH(t)] = APAH + σI, (3)

where P = E[x(t)xH(t)] denotes the source covariance
matrix, and σ denotes the variance of the additive noise.
Under the assumption that the sources are uncorrelated, P
reduces to a diagonal matrix, which can be expressed as
P = diag(p1, p2, . . . , pK).

Vectorizing R leads to

r = vec(R) = Adp+ σ vec(I), (4)

where Ad = A∗ � A and p = [p1, p2, . . . , pK ]T . Prior
work has shown that Ad can be viewed as an steering matrix
of a difference coarray whose sensor locations are given by
Dco = {(d̄m − d̄n)d0|m,n = 1, 2, . . . ,M} [18]. Therefore r
can be viewed as measurement vector of the difference coarray
with a deterministic source signal p plus a deterministic noise
term σ vec(I), and (4) is usually referred to as the difference
coarray model. For carefully designed sparse linear arrays,
Dco contains more unique sensor locations than D, and an
augmented sample covariance matrix can be constructed from
the estimate of r. By applying DOA estimation algorithms,
such as MUSIC, to this augmented sample covariance matrix,
we are able to resolve more sources than the number of
sensors [32].

Because both the difference coarray model and the resulting
augmented covariance matrix are constructed from the samples
from the original model, we still make use of the statistical
properties of the original signal model (1) when conducting
performance analysis of such DOA estimation algorithms.
Therefore, it is crucial that we thoroughly analyze the CRB
based on the signal model (1).

Because P is a diagonal matrix, the number of unknown
parameters to be estimated is 2K+ 1. Using the property that
tr(ABCD) = vec(AT )T (DT⊗B) vec(C), the CRB for the
DOAs can then be expressed in the following compact form
[32], [34], [35]:

B(sto-uc)(ω) =
1

N
(MH

ω Π⊥Ms
Mω)−1, (5)

where

Mω = (RT ⊗R)−1/2ȦdP , (6)

Ms = (RT ⊗R)−1/2[Ad vec(IM )], (7)

Ȧd = Ȧ∗ �A+A∗ � Ȧ, (8)
Ad = A∗ �A, (9)

Ȧ =
[
∂a(ω1)
∂ω1

∂a(ω1)
∂ω2

· · · ∂a(ω1)
∂ωK

]
. (10)

In our prior work [32], we analyzed the unusual behavior
of B(sto-uc) when K ≥ M . We showed that when K ≥ M ,
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B(sto-uc) remains positive definite even if SNR → ∞. In
the following sections, we focus on the K < M case. We
will first establish the connection between B(sto-uc) and the
classical stochastic CRB derived by Stoica et. al in [28]. Then,
we will analyze B(sto-uc) when M is sufficiently large. These
analyses will provide more insights into the performance limits
of sparse linear arrays.

III. CONNECTION TO THE CLASSICAL STOCHASTIC CRB

For the stochastic model [28], we can derive the CRB either
without the prior assumption that the sources are uncorrelated,
or with it. Hence, we can obtain two different CRBs under the
two different assumptions, and both of them are applicable
for ULAs and sparse linear arrays when K < M . In the
following discussion, we first identify their differences, and
then investigate the connection between them.

Without prior knowledge that the sources are uncorrelated,
the unknown parameters consist of the DOAs, ω, the real and
imaginary parts of P , and the noise variance σ. Because P
is Hermitian, there are K2 + K + 1 unknown parameters. In
this case, the CRB of the DOAs is given by [28], [36]:

B(sto)(ω) =
σ

2N

{
<[(ȦHΠ⊥AȦ) ◦ (PAHR−1AP )T ]

}−1
.

(11)
We refer to B(sto) as the classical stochastic CRB.

With the prior assumption that the sources are uncorrelated,
the CRB of the DOAs is given by B(sto-uc), as we derived in
(5) in the previous section.

Using (5), we observe that the existence of B(sto-uc) depends
on Ad, the steering matrix of the difference coarray. It has
been shown that B(sto-uc) remains valid for carefully designed
sparse linear arrays, even if the number of sources exceeds the
number of sensors [34]. On the other hand, according to (11),
B(sto) is valid only when the number of sources is less than
the number of sensors. Otherwise ATA becomes singular and
the projection matrix Π⊥A is no longer well-defined.

While the compact form (5) of B(sto-uc) provides great con-
venience when analyzing the maximum number of resolvable
sources [34], it is not well-suited for our asymptotic analysis
in the following discussion. Therefore, we provide a brief
review of its more traditional form, obtained by block-wise
computation of the Fisher information matrix (FIM). Under
the assumption that the sources are uncorrelated, the FIM of
the stochastic model is given by [2]

J(sto-uc) = N

Jωω Jωp Jωσ
Jpω Jpp Jpσ
Jσω Jσp Jσσ

 , (12)

where

Jωω =2<[(ȦHR−1Ȧ)∗ ◦ (PAHR−1AP )

+ (ȦHR−1A)∗ ◦ (PAHR−1ȦP )],

Jpp =(AHR−1A)∗ ◦ (AHR−1A),

Jσσ = tr(R−2),

Jωp =2<[(ȦHR−1A)∗ ◦ (PAHR−1A)],

Jωσ =2<[diag(PȦHR−2A)],

Jpσ = diag(AHR−2A),

and Jpω = JHωp, Jσω = JHωσ , Jσp = JHpσ .
By inverting J(sto-uc), we obtain the alternative expression of

B(sto-uc). While this expression seems much more complicated
than the one in (5), it can be shown that they are equivalent
via Lemma 1 in Appendix A. In the following derivations, we
make extensive use of (12) instead of (5).

When P is diagonal, there is a subtle distinction between
B(sto) and B(sto-uc). B(sto) gives the CRB when the sources
are uncorrelated and this knowledge is not known a priori.
B(sto-uc) gives the CRB when the sources are uncorrelated
and this knowledge is known a priori. This subtle distinction
implies that B(sto) and B(sto-uc) are not equal. In fact, it
is straightforward to show that B(sto-uc) � B(sto), implying
that incorporating the prior knowledge reduces uncertainties
in estimating the DOAs. If we compare (11) with (12), we
can observe that the term PAHR−1AP appears in both
expressions, suggesting a potential connection between B(sto)

and B(sto-uc). We reveal this connection in Theorem 1.
Theorem 1: Assume that the K sources are uncorrelated

and that K < M . If we fix the diagonal matrix P � 0,
B(sto)

.
= B(sto-uc) as σ → 0, where .

= denotes that the equality
is up to the first order with respect to σ.

Proof: See Appendix B.
Theorem 1 shows that when the sources are uncorrelated

and the number of sources is less than the number of sensors,
B(sto) and B(sto-uc) are approximately equal when the SNR is
large. This result agrees with our intuition. When the SNR is
larger, we can clearly identify the signals, and incorporating
the prior knowledge will not give much improvement in
estimation performance. When the SNR is low, the signals
cannot be clearly distinguished from the noise, and we are
more uncertain about whether the sources are correlated. In
this case, incorporating the prior knowledge will help improve
the estimation performance.

IV. THE CRAMÉR-RAO BOUND FOR CO-PRIME AND
NESTED ARRAYS WITH LARGE NUMBER OF SENSORS

In this section, we analyze the behavior of B(sto-uc) for
ULAs, co-prime arrays, and nested arrays with large numbers
of sensors. The expression of B(sto-uc) is rather complicated
and unrevealing. By adopting the assumption that the number
of sensors is large, we are able to approximate B(sto-uc) with a
much simpler and more revealing expression, leading to more
insights into the statistical performance of co-prime and nested
arrays. In [37], our preliminary results showed thatB(sto-uc) for
co-prime and nested arrays can decrease at a rate of O(M−5).
In this section, we will provide rigorous proofs and more
thorough analysis. Our analysis can also be extended to other
sparse linear arrays with closed-form solutions, such as gener-
alized co-prime arrays [15]. While numerical simulations show
that MRAs share behaviors similar to co-prime and nested
arrays [37], we cannot obtain similar analytical results because
MRA configurations do not have closed-form solutions. We
will begin with ULAs and then proceed to analyze co-prime
and nested arrays. Throughout this section, we will assume
that the number of sources is strictly less than the number of
sensors.
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A. Uniform Linear Arrays

We begin by analyzing the behavior of B(sto-uc) for ULAs
with large number of sensors, which will serve as a reference
in later discussion. In [26], the authors showed that for an
M -sensor ULA, the CRB of the deterministic signal model
decreases at a rate of O(M−3) for large M . However, to the
authors’ best knowledge, it is not shown if B(sto-uc) shares
the same behavior. In the following proposition, we show that
B(sto-uc) indeed shares the same behavior.

Proposition 1: Assume that SNR−1
i = σ/pi � M for all

i = 1, 2, . . . ,K and that K < M . Then for ULAs, as M →
∞,

B(sto-uc)(ω) ≈ 6

M3N
σP−1. (13)

Proof: See Appendix C.

B. Nested Arrays

Nested arrays are constructed by concatenating two uniform
linear arrays with different inter-element spacings. The precise
definition of nested arrays is stated as follows:

Definition 1: A nested array generated by the parameter
pair (N1, N2) is given by {1, . . . , N1}d0 ∪ {N1 + 1, 2(N1 +
1), . . . , N2(N1 + 1)}d0.

Unlike ULAs, the physical array geometries of nested arrays
can be drastically different, even if they share the same number
of sensors2. To obtain a more thorough analysis, given the
number of sensors, M , we let N1 = µM and N2 = (1−µ)M .
We can vary µ ∈ (0, 1) and M to obtain all possible nested
array configurations3.

Due to the nonuniformity of nested arrays, the behavior of
B(sto-uc) for nested arrays turns out to be more complicated
than that of ULAs. We begin with the one-source case.

Theorem 2: Let the rational number µ satisfy µ ∈ (0, 1).
Consider a nested array generated by (N1, N2) satisfying N1+
N2 = M and N1 = µM . Assume that K = 1 and that
SNR−1 = σ/p�M . Then as M →∞,

B(sto-uc)(ω) ≈ 1

hne(µ)

1

N

1

M5

1

SNR
, (14)

where

hne(µ) =
µ2(1− µ)3(1 + 3µ)

6
.

Proof: See Appendix D-A.
Theorem 2 shows that, in the one-source case, B(sto-uc)

of nested arrays can decrease at a rate of O(M−5) as the
number of sensors, M , approaches infinity. This rate is much
faster than that of the ULAs, which is O(M−3) as shown
in Proposition 1. The coefficient hne(µ) is determined by µ,
which encodes the effect of different M -sensor nested array
configurations on B(sto-uc). As a typical example, when we
choose N1 = N2 = Q, B(sto-uc) can be simplified to (15) as
shown in the following corollary.

2For example, the nested arrays generated by (8, 2) and (5, 5) both have
10 sensors. However, the latter can achieve 30 degrees of freedom, while the
former can achieve only 18 degrees of freedom.

3Once M is given, the number of choices of µ is finite because we need
to ensure that both N1 and N2 are nonnegative integers.
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Fig. 1: (B(sto-uc)(ω1) + B(sto-uc)(ω2))/2 computed from dif-
ferent combinations of (ω1, ω2) for a uniform linear array
with 16 sensors and a nested array generated by the parameter
pair (8, 8). Both arrays consist of 16 sensors. Locations where
(N1 + 1)(ω1 − ω2) = 2kπ for some non-zero integer k are
marked with vertical dashed lines. The horizontal dash line
denotes the approximation given by (16) in Theorem 3.

Corollary 1: Under the same assumptions as in Theorem 2,
as Q → ∞, B(sto-uc) for nested arrays generated by the
parameter pair (Q,Q) is given by

B(sto-uc)(ω) ≈ 12

5

1

Q5

1

N

1

SNR
. (15)

Proof: Immediately obtained by setting M = 2Q and
µ = 0.5 in (14).

We next consider multiple sources. Unlike ULAs, the inter-
element spacing of the second subarray of a nested array
is (N1 + 1)d0, which is greater than d0. Consequently, its
unambiguous range is (−π/(N1 + 1), π/(N1 + 1)), which
is much smaller than (−π, π). If any two sources, ωm and
ωn, satisfy (N1 + 1)(ωm − ωn) = 2kπ for some non-zero
integer k, they cannot be resolved by the second subarray.
For instance, when N1 > 1, the two DOAs, ω1 = 0 and
ω2 = 2π/(N1 + 1), cannot be resolved by this subarray
because ejω1q(N1+1) = ejω2q(N1+1) for q = 1, 2, . . . , N2.
Although such DOA pairs cannot be resolved by the second
subarray alone, they can still be resolved by the whole nested
array [34]. However, we expect degraded performance when
such DOA pairs exist. To illustrate this behavior, we plot
in Fig. 1 the values of B(sto-uc) of two sources, denoted
by ω1 and ω2, against ω1 − ω2 for a 16-sensor ULA and
a nested array generated by the parameter pair (8, 8). We
observe that B(sto-uc) of the nested array is much smaller than
that of the ULA. However, B(sto-uc) of the nested array is
not as flat as that of the ULA, and shows large peaks when
(N1 + 1)(ω1 − ω2) = 2kπ for some non-zero integer k. To
further analyze such a behavior, we introduce the concepts of
fully degenerate source placements and δ-level non-degenerate
source placements in Definition 2 and 3.

Definition 2: Let ω1, ω2, . . . , ωK be K distinct DOAs within
the range (−π, π). These K DOAs are said to be fully
degenerate with respect to a positive integer L if (ωm −
ωn)L = 2kπ for some non-zero k ∈ Z whenever m 6= n,
m,n = 1, 2, . . . ,K.
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Fig. 2: An illustration of Ω0.4
3 within (−2π, 2π). The intervals

in Ω0.4
3 are highlighted by bold segments along the x-axis.

Definition 3: Let ω1, ω2, . . . , ωK be K distinct DOAs within
the range (−π, π). These K DOAs are said to be δ-level non-
degenerate with respect to a positive integer L if ωm − ωn ∈
ΩδL whenever m 6= n, m,n = 1, 2, . . . ,K, where

ΩδL = {ω|ωL/2 ∈ [kπ+arcsin δ, (k+1)π−arcsin δ], k ∈ Z},

and 0 < δ < 1.
According to Definition 3, if the K DOAs are δ-level non-

degenerate with respect to L, then for any DOA pair ωm
and ωn, | sin((ωm − ωn)L/2)| ≥ δ. To better understand this
statement, we illustrate the set Ω0.4

3 in Fig. 2. We can observe
that, as long as ω ∈ Ω0.4

3 , | sin(3ω/2)| ≥ 0.4. Specifically,
if the K DOAs are δ-level non-degenerate with respect to 1,
then the wraparound distance between any two DOAs within
(−π, π) is lower bounded by 2 arcsin δ, which ensures that
any two DOAs are not too close to each other. When the
number of sensors is sufficiently large, we are able to conduct
various approximations and greatly simplify B(sto-uc) for both
the δ-level non-degenerate and the fully degenerate source
placements. The results are summarized in Theorem 3.

Theorem 3: Let the rational number µ satisfy µ ∈ (0, 1).
Consider a nested array generated by (N1, N2) satisfying N1+
N2 = M and N1 = µM . Assume that K < M and that
SNR−1

i = σ/pi �M for i = 1, 2, . . . ,K.
1) If the K DOAs are δ-level non-degenerate with respect

to 1 and N1+1 for some 0 < δ < 1 and M is sufficiently
large,

B(sto-uc)(ω) ≈ 1

hne(µ)

1

N

1

M5
σP−1, (16)

where hne(µ) follows the same definition as in Theo-
rem 2.

2) If the K DOAs are fully degenerate with respect to N1 +
1, then when M is sufficiently large,

B(sto-uc)(ω) ≈ 1

hne-d(µ)

1

N

1

M5
σP−1, (17)

where

hne-d(µ) =
µ2(1− µ)3

6

4µ+ (1− µ)K

µ+ (1− µ)K
. (18)

Proof: See Appendix E.
Remark 1: Theorem 3.1 gives the best-case approximation

of B(sto-uc) for nested arrays with large number of sensors,
while Theorem 3.2 provides the approximation of B(sto-uc)
for fully degenerate source placements. When K = 1, (17)

reduces to (16). Additionally, hne-d(µ) decreases as the number
of sources, K, increases. Hence B(sto-uc) increases as the
number of fully degenerate sources increases. Recall that in
Fig. 1, B(sto-uc) fluctuates for different combinations of DOAs.
We are now able to approximate the range of such fluctuations
via (16) and (17).

Remark 2: According to [18], given a fixed number of
sensors, M , the maximum degrees of freedom is achieved
when µ ≈ 0.5 (i.e., N1 = N2 when M is even and
N1 + 1 = N2 when M is odd). On the other hand, according
to Theorem 2 and Theorem 3.1, for a fixed M , different
nested array configurations only affect the coefficient hne(µ).
Therefore, the best-case B(sto-uc) is minimized when hne(µ) is
maximized. Interesting, hne(µ) is maximized at µ? ≈ 0.4625,
which is slightly different from 0.5. This discrepancy implies
that when M is large, a nested array configuration cannot
achieve the maximum degrees of freedom and the optimal
estimation performance at the same time. We will further
illustrate this interesting finding in Section V with numerical
experiments.

C. Co-prime Arrays

Next, we consider co-prime arrays, whose the definition is
given as follows:

Definition 4: A co-prime array generated by the co-prime
pair (N1, N2) is given by {0, N1, . . . , (N2 − 1)N1}d0 ∪
{N2, 2N2, . . . , (2N1 − 1)N2}d0.

Similar to nested arrays, given a fixed number of sensors,
M , there exist multiple co-prime arrays configurations. To
obtain a more thorough analysis, we let N1 = µ(M + 1) and
N2 = (1−2µ)(M+1). It can be verified that 2N1 +N2−1 =
M is satisfied. By varying both µ and M , we can obtain
all possible co-prime array configurations. Note that once M
is fixed, the number of choices of µ is finite because the
following conditions must be satisfied:

1) Both µ(M+1) and (1−2µ)(M+1) are positive integers;
2) µ(M + 1) and (1− 2µ)(M + 1) are co-prime;
3) µ(M + 1) < (1− 2µ)(M + 1).

Therefore a valid choice of µ must be within the interval
(0, 1/3).

We now proceed to consider the one-source case for co-
prime arrays. The results are summarized in Theorem 4.

Theorem 4: Let the rational number µ satisfy µ ∈ (0, 1/3).
Consider a co-prime array generated by the co-prime pair
(N1, N2) satisfying N1 = µ(M +1) and N2 = (1−2µ)(M +
1). Assume that K = 1 and that SNR−1 = σ/p� M . Then
as M →∞,

B(sto-uc)(ω) ≈ 1

hcp(µ)

1

N

1

M5

1

SNR
, (19)

where

hcp(µ) =
µ2(1− 2µ)2(1 + 12µ− 12µ2)

6
.

Proof: See Appendix D-B.
Theorem 4 shows that, in the one-source case, B(sto-uc) of

co-prime arrays is similar to that of nested arrays. The only
difference lies in the coefficient, hcp(µ), which is determined
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by the co-prime parameters. As a typical example, when we
choose N1 = Q and N2 = Q + 1, B(sto-uc) can be simplified
to (20) as shown in the following corollary.

Corollary 2: Under the same assumptions as in Theorem 4,
as Q → ∞, B(sto-uc) for co-prime arrays generated by the
co-prime pair (Q,Q+ 1) is given by

B(sto-uc)(ω) ≈ 6

11

1

Q5

1

N

1

SNR
. (20)

Proof: Immediately obtained by setting M = 3Q and
µ→ 1/3 in (19).

We next consider multiple sources. Unlike nested arrays,
co-prime arrays consist of two subarrays whose inter-element
spacings are greater than d0. Given a co-prime pair, (N1, N2),
the unambiguous range of the two subarrays are given by
(−π/N1, π/N1) and (−π/N2, π/N2), both of which do not
cover the full range (−π, π). If two DOAs, ωm and ωn, satisfy
N1(ωm − ωn) = 2kπ for some non-zero integer k, they
cannot be resolved by the first subarray. Similarly, if they
satisfy N2(ωm − ωn) = 2kπ for some non-zero integer k,
they cannot be resolved by the second subarray. Nevertheless,
the full co-prime array can still resolve the DOAs within the
full range (−π, π) without ambiguity [34], [38]. However, we
expect degraded estimation performance when a DOA pair is
ambiguous to either of the subarrays. To demonstrate such
performance degradation, we plot in Fig. 3 the values of
B(sto-uc) of two sources, denoted by ω1 and ω2, against ω1−ω2

for a 16-sensor ULA and a co-prime array generated by the
parameter pair (5, 7). Although B(sto-uc) of the co-prime array
is much smaller than that of the ULA, it is not as flat as that
of the ULA. There exist small peaks near the locations given
by N1(ω1 − ω) = 2kπ and N1(ω1 − ω) = 2kπ, where k is
a non-zero integer. Unlike the results in Fig. 1, B(sto-uc) of
the co-prime array exhibits more peaks clustered around the
dashed lines, and the peaks locations are not aligned with the
dashed lines. Consequently, we are unable to derive a simple
and DOA-independent approximation of B(sto-uc) similar to
(17) under the fully degenerate case. Nevertheless, we can
still obtain similar results for the non-degenerate case, which
are summarized in Theorem 5.

Theorem 5: Let the rational number µ satisfy µ ∈ (0, 1/3).
Consider a co-prime array generated by the co-prime pair
(N1, N2) satisfying N1 = µ(M +1) and N2 = (1−2µ)(M +
1). Assume that K < M and that SNR−1

i = σ/pi � M for
i = 1, 2, . . . ,K. If the K DOAs are δ-level non-degenerate
with respect to both N1 and N2 for some 0 < δ < 1 and M
is sufficiently large,

B(sto-uc)(ω) ≈ 1

hcp(µ)

1

N

1

M5
σP−1, (21)

where hne(µ) follows the same definition as in Theorem 4.
Proof: The proof follows exactly the same route as in

Appendix E, except that the steering vectors are replaced with
those of the co-prime arrays’. The details are omitted due to
page limitations.

Remark 3: According to [11], a co-prime array generated
by the co-prime pair (N1, N2) can achieve O(N1N2) degrees
of freedom. Therefore, under the constraint that 2N1 +N2 −

-6 -4 -2 0 2 4 6

1
 - 

2

10-3

B
s
to

-u
c ULA 16

Coprime (5,7)

Coprime (5,7) approx.

Fig. 3: (B(sto-uc)(ω1) + B(sto-uc)(ω2))/2 computed from dif-
ferent combinations of (ω1, ω2) for a uniform linear array
with 16 sensors and a co-prime array generated by the co-
prime pair (5, 7). Both arrays consist of 16 sensors. Locations
where N1(ω1 − ω2) = 2kπ or N2(ω1 − ω2) = 2kπ for some
non-zero integer k are marked with vertical dashed lines. The
horizontal dash line denotes the approximation given by (21)
in Theorem 5.

1 = M , the maximum degrees of freedom is achieved when
2N1 = N2, or µ ≈ 0.25. Interestingly, hcp(µ) is maximized at
µ? ≈ 0.2747, which is slightly different from 0.25. Therefore,
similar to the nested array case, when M is large, a co-prime
array cannot achieve the maximum degrees of freedom and
the optimal estimation performance at the same time. We will
further illustrate this interesting finding in Section V with
numerical experiments.

D. Discussion

Theorem 2–5 lead to the following three important impli-
cations for co-prime and nested arrays:

1) Given the same number of sensors, co-prime and nested
arrays can achieve a much better estimation performance
than ULAs.

2) Given the same aperture, co-prime and nested arrays need
many more snapshots to achieve the same estimation
performance of ULAs.

3) Co-prime and nested arrays with large number of sensors
cannot attain the maximum degrees of freedom and the
minimal CRB at the same time.

The first implication comes directly from Theorem 2–5.
Given the same number of sensors, M , B(sto-uc) of co-prime
and nested arrays can decrease at a rate of O(M−5), which is
much faster than O(M−3). In addition to their attractive ability
to identify K ≥M uncorrelated sources, co-prime and nested
arrays can also achieve much better estimation performance
than ULAs with the same number of sensors when K < M .

To understand the second implication, we consider a ULA
with M2 sensors. From Proposition 1, we know that B(sto-uc)
of this ULA is O(M−6). To achieve the same aperture, we
need a co-prime (or nested) array with only O(M) sensors.
However, according Theorem 2–5, the resulting B(sto-uc) of
this co-prime (or nested) array will be only O(M−5). There-
fore, we need O(M) times more snapshots to achieve the
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same estimation performance as the ULA. By thinning a
ULA into a co-prime (or nested) array, we can reduce the
number of sensors from O(M2) to O(M), while keeping the
array’s ability to identify up to O(M2) uncorrelated sources.
However, this thinning operation indeed comes with a cost: the
variance of the estimated DOAs can be M times larger. The
second implication shows the trade-off between the number of
spatial samples and the number of temporal samples.

The third implication results from Remark 1 and 3. For
M -sensor nested arrays, the optimal ratio between N1 and
N2 to minimize B(sto-uc) of non-degenerate source placements
is approximately 0.8605, which is slightly smaller than 1,
the optimal ratio to maximize degrees of freedom. For M -
sensor co-prime arrays, the optimal ratio between N1 and N2

to minimize B(sto-uc) of non-degenerate source placements is
approximately 0.6096, which is slightly larger than 0.5, the
optimal ratio to maximize degrees of freedom.

Remark 4: In the above analysis, the number of sources,
K, is assumed to be smaller than the number of sensors, M .
Because co-prime and nested arrays can identify more sources
than the number of sensors, it would be interesting to conduct
a similar analysis for the K ≥ M case. However, when M
is very large and K ≥M holds, the sources become densely
located within (−π/2, π/2). In this case, ωi − ωj is close
to zero for any two different sources i and j, rendering the
approximations in Appendix E invalid. Therefore, the results
in Theorem 3 and 5 cannot be directly extended to the cases
when K ≥M .

V. NUMERICAL ANALYSIS

In this section, we demonstrate our results in Theorem 1–5
using numerical experiments. In all the following experiments,
we normalize the number of snapshots to 1 and define the SNR
as

SNR = 10 log10

mink=1,2,...,K pk
σ

.

When there are K > 1 sources, we use the mean val-
ues, 1

K

∑K
k=1B(sto-uc)(ωk), instead of the individual values,

B(sto-uc)(ωi), when making comparisons.
We start this section by demonstrate Theorem 1. We con-

sider the following four different sparse linear arrays:
• Co-prime (3,5): [0, 3, 5, 6, 9, 10, 12, 15, 20, 25]d0;
• MRA 10 [8]: [0, 1, 4, 10, 16, 22, 28, 30, 33, 35]d0;
• Nested (4,6): [0, 1, 2, 3, 4, 9, 14, 19, 24, 29]d0;
• Nested (5,5): [0, 1, 2, 3, 4, 5, 11, 17, 23, 29]d0.

We consider six sources with equal power, whose the DOAs,
θk, are given by θk = −π/3 + 2(k − 1)π/15, k = 1, 2, . . . , 6.
We vary the SNR from -20 dB to 20 dB and plot the relative
difference between B(sto) and B(sto-uc) in Fig. 4. It can be
observed that when the SNR is above 0 dB, the relative
difference betweenB(sto) andB(sto-uc) for all four sparse linear
arrays drastically decreases to zero as SNR increases. When
the SNR is below 0 dB, B(sto-uc) becomes more optimistic
and deviates from B(sto). These observations agree with our
theoretical results in Theorem 1.

We next demonstrate Theorem 2 and Theorem 4 via nu-
merical experiments. We consider co-prime arrays generated
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Nested (4,6)

Nested (3,7)

Fig. 4: | tr(B(sto)−B(sto-uc))|/ tr(B(sto-uc)) for the four arrays
under different SNRs.
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(b)

2 4 6 8 10 12 14 16 18 20

Q

10-8

10-6

10-4

10-2

100

102

C
R

B

SNR=-20dB

SNR=-20dB approx.

SNR=-10dB

SNR=-10dB approx.

SNR=0dB

SNR=0dB approx.

SNR=10dB

SNR=10dB approx.

Fig. 5: B(sto-uc) vs. Q for (a) co-prime arrays; (b) nested
arrays. One-source case. The solid lines represent accurate
values computed using (5), while the dashed lines represent
approximations given by Corollary 1 and 2.

by the co-prime pair (Q,Q+ 1), and nested arrays generated
by the parameter pair (Q,Q), where we vary Q between 3 and
20. With such configurations, B(sto-uc) of co-prime and nested
arrays can be approximated with even simpler expressions as
shown in Corollary 1 and 2. We consider four different SNR
settings: -20 dB, -10 dB, 0 dB, and 10 dB, and consider
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Fig. 6: B(sto-uc) vs. M for M -sensor ULAs, nested arrays co-
prime arrays. K = 5. The markers represent the actual values
of B(sto-uc) obtained from 1000 randomly generated source
placements. The dashed lines represent approximations given
by Proposition 1, Theorem 3 and Theorem 5.

one source placed at the the origin. The results are plotted
in Fig. 5. Give large enough Q values and sufficient SNR,
our approximation is very close to the accurate value of
B(sto-uc) for both co-prime and nested arrays. When the SNR
is slow, the noise variance term can no longer be neglected
and our approximation deviates from the true values. When
the value of Q is small, the contribution of the terms with
lower degrees with respect to Q is no longer negligible, and
our approximation is no longer accurate.

Next, we consider the multiple-source case and demonstrate
that B(sto-uc) for co-prime and nested arrays can indeed
decrease at a rate of O(M−5). We consider three groups
of arrays: (i) M -sensor ULAs with M = 10, 11, . . . , 100;
(ii) nested arrays generated by the parameter pairs (Q,Q),
Q = 5, 6, . . . , 50; (iii) co-prime arrays generated by the co-
prime pairs (Q,Q + 1), Q = 5, 6, . . . , 33. We consider 5
sources with equal power and set SNR = 0 dB. For each
array configuration with M sensors, we randomly generate
1000 source placements within (−4π/5, 4π/5) and ensure
that the minimal source separation is no less than 2π/M .
We compute the actual values of B(sto-uc) for these source
placements and compare them with the approximations given
in Proposition 1, Theorem 3 and Theorem 5. The results are
plotted in Fig. 6. The actual CRB values computed from
random source placement, while not fall exactly on the dash
lines, cluster closely to the dashed lines as the number of
sensors M grows. The observation confirms our approximation
of B(sto-uc) for a sufficient large M . In addition, the CRB
values of co-prime and nested arrays decrease much faster than
those of ULAs, because they decrease at a rate of O(M−5)
instead of O(M−3).

In the previous experiments, we assume that the sources
have equal power. However, Theorem 3 and 5 does not require
all sources share the same power. Therefore, we conduct
addition experiments for the multiple-source case when the
source powers are not equal. We consider four sources with
p = [2, 10, 30, 50]σ. The results are plotted in Fig. 7. We ob-
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Fig. 7: B(sto-uc) of individual sources vs. Q for (a) co-prime
arrays and (b) nested arrays. Four sources with different
powers are considered. The solid lines represent accurate
values computed using (5), while the dashed lines represent
approximations given by (16) and (21).

serve that the actual CRBs closely follow the approximations
given by (16) and (21) for all four sources.

Next, we analyze how different nested and co-prime array
configurations affect B(sto-uc) when the number of sensors M
is fixed. We consider six sources with equal power and set
SNR = 0 dB. For each array configuration, we randomly gen-
erate 5000 source placements within the range (−0.9π, 0.9π)
while ensuring the minimal source separation is no less than
π/M . We compute the values of B(sto-uc) for these source
placements and compare them with the approximations given
by Theorem 3 and 5. We first consider nested arrays with 50
sensors and vary N1 from 10 to 40. Correspondingly, the val-
ues of µ vary from 0.2 to 0.8. The results are plotted in Fig. 8.
It can be observed that most of the CRB values cluster around
the approximation given by (16), demonstrating that our result
is applicable to a wide range of nested-array configurations. It
can also be observed that most of the CRB values fall under
the dashed line, showing that the approximation of the fully
degenerate case given by (17) provides a reasonable estimate
of the degenerated performance. Additionally, we observe that
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Fig. 8: B(sto-uc) vs. µ for nested arrays with 50 sensors.
K = 6. The solid line represents the approximation obtained
from (16), and the dashed line represents the approximation
obtained from (17). The markers represent the distribution of
actual values of B(sto-uc) obtained from randomly generated
source placements. The marker size is proportional to the
number of B(sto-uc) values concentrating around the marker
center.
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Fig. 9: B(sto-uc) vs. µ for co-prime arrays with 81 sensors.
K = 6. The solid line represents the approximation obtained
from (21). The markers represent the distribution of actual
values of B(sto-uc) obtained from randomly generated source
placements. The marker size is proportional to the number of
B(sto-uc) values concentrating around the marker center.

the lowest CRB values are found around µ ≈ 0.46 instead
of µ = 0.5, which agrees with our theoretical prediction in
Remark 1. We next consider co-prime arrays with 81 sensors
and vary N1 from 3 to 27. Correspondingly, the values of µ
vary from 0.037 to 0.329. The maximum degrees of freedom
is achieved when N1 = 21, N2 = 40 with µ ≈ 0.2561.
The results are plotted in Fig. 9. It can be observed that (21)
provides a reasonable estimate of the CRB values for a wide
range of co-prime array configurations. Similar to the nested
array case, the lowest CRB values are found around µ ≈ 0.28
instead of 0.2561, which agrees with our theoretical prediction
in Remark 3.

We close this section by addressing the comments in Re-
mark 4 using numerical experiments. We consider a co-prime
array generated by the co-prime pair (20, 21). The resulting
co-prime array has M = 60 sensors. We uniformly place
the DOAs, ωk, at ωk = −π/3 + 2(k − 1)π/(3K − 3), k =
1, 2, . . . ,K. We vary the number of sources, K, from 2
to 61. We plot the actual CRB, B(sto-uc), together with the
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Fig. 10: B(sto-uc) and the approximation given by (16) versus
the number of sources. The co-prime array has 60 sensors.
The solid lines represent accurate values computed using (5),
while the dashed lines represent approximations given by (21).

approximation given by (21) in Fig. 10. The real CRB values
are denoted by solid lines, and the approximations given by
(21) are denoted by dashed lines. We can observe that, when
the number of sources is small, the actual CRB values are
very close to our approximations, despite some fluctuations.
However, as the number of sources increases, the actual CRB
values begin to deviate from our approximations. In such
cases, these sources become very close to each other. To satisfy
the assumption that the DOAs are δ-level non-degenerate with
respect to 20 and 21, δ must be chosen to be very small.
Hence, δ−1 will be large enough such that M = 60 � δ−1

no longer holds. Consequently, our approximation (21) is no
longer accurate and the actual CRBs start to deviate from our
approximation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we conducted further analysis of the CRB
presented in our previous work [32], denoted by B(sto-uc). We
first showed that, when the SNR is high, B(sto-uc) coincides
with the classical stochastic CRB, B(sto). We next analyzed
the behavior of B(sto-uc) for co-prime and nested arrays with
a large number of sensors. We showed how different con-
figuration parameters affect B(sto-uc) and derived the optimal
configuration parameters for co-prime and nested arrays with
large number of sensors. We showed that given a fixed number
of sensors, co-prime and nested arrays significantly outperform
ULAs. This finding theoretically confirmed the advantage of
using co-prime and nested arrays when the number of sensors
is a limiting factor. We also showed that when the aperture is
fixed, co-prime and nested arrays need many more snapshots
to achieve the same performance as ULAs, demonstrating
the trade-off between the number of spatial samples and the
number of temporal samples. These results show both the
pros and cons of sparse linear arrays and will aid in choosing
between sparse linear arrays and ULAs in practical problems.
Potential future work involves: (i) investigating the behavior
of the CRB in cases of degenerate source placements for co-
prime arrays; (ii) analyzing the CRB for co-prime and nested
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arrays with large number of sensors when there are more
sources than the number of sensors.

APPENDIX A
USEFUL LEMMAS

Lemma 1: Let A, B, C, D, E, and F be compatible
matrices. Then

(A�B)H(C⊗D)(E�F ) = (AHCE) ◦ (BHDF ). (22)

Proof: The left-hand side of (22) can be expanded asa
H
1 ⊗ bH1

...
aHM ⊗ bHM

 (C ⊗D)
[
e1 ⊗ f1 · · · eN ⊗ fN

]
, (23)

whose (i, j)-th element is given by

(aHi ⊗ bHi )(C ⊗D)(ej ⊗ fj)
=(aHi Cej)(b

H
i Dfj).

Observing that aHi Cej is the (i, j)-th element of AHCE,
and that bHi Dfj is the (i, j)-th element of BHDF , we
immediately conclude that the left-hand side is equal to the
right-hand side in (22).

Lemma 2 (Woodbury matrix inversion lemma [39]):

(A+UCV )−1 = A−1−A−1U(C−1 +V A−1U)−1V A−1.

Lemma 3: Let A be nonsingular and B have a sufficiently
small norm. Then

(A+B)−1 ≈ A−1 −A−1BA−1. (24)

Proof: For B with a sufficiently small norm, the spectral
radius of A−1B will be less than one, and the Taylor series
expansion of (A + B)−1 converges [39, P. 421]. Therefore,
(24) is just the first-order Taylor approximation.

Lemma 4:

n−1∑
k=0

sin kd =
sin nd

2

sin d
2

sin
(n− 1)d

2
,

n−1∑
k=0

cos kd =
sin nd

2

sin d
2

cos
(n− 1)d

2
.

Proof: Obtained by considering the real and imaginary
parts of the sum

∑n−1
k=0 e

jkd.
Lemma 5:

n−1∑
k=0

k sin kd =
(n− 1) sin(nd)− n sin((n− 1)d)

2(cos d− 1)
,

n−1∑
k=0

k cos kd =
(n− 1) cos(nd)− n cos((n− 1)d) + 1

2(cos d− 1)
.

Proof: Obtained by differentiating both sides of the
equations in Lemma 4 with respect to d.

Lemma 6:

n−1∑
k=0

k2 sin kd =
n(n− 1)[sin(nd)− sin((n− 1)d)]

2(cos d− 1)

− sin d[(n− 1) cos(nd)− n cos((n− 1)d) + 1]

2(cos d− 1)2
,

n−1∑
k=0

k2 cos kd =
n(n− 1)[cos(nd)− cos((n− 1)d)]

2(cos d− 1)

+
sin d[(n− 1) sin(nd)− n sin((n− 1)d)]

2(cos d− 1)2
.

Proof: Obtained by differentiating both sides of the
equations in Lemma 5 with respect to d.

APPENDIX B
PROOF OF THEOREM 1

Without loss of generality, we assume that N = 1. We al-
ready know that when P is diagonal, the following inequalities
hold:

J−1
ωω � B(sto-uc) � B(sto). (25)

It suffices to show that J−1
ωω

.
= B(sto). We will make use of

the following lemma:
Lemma 7: For sufficiently small σ, σR−1 = Π⊥A +O(σ).

Proof: By Lemma 2, we have

σR−1 = I −A(σP−1 +AHA)−1AH . (26)

Because AHA is full rank, by Lemma 3, (σP−1 +
AHA)−1 = (AHA)−1 +O(σ).

Using the above lemma, we observe that

σ<[(ȦHR−1Ȧ)∗ ◦ (PAHR−1AP )]

=<[(ȦH(σR−1)Ȧ)∗ ◦ (PAHR−1AP )]

=<[(ȦHΠ⊥AȦ)∗ ◦ (PAHR−1AP ) +O(σ)].

Because that Π⊥AA = 0, we have

σ<[(ȦHR−1A)∗ ◦ (PAHR−1ȦP )]

=<[(ȦH(σR−1)A)∗ ◦ (PAHR−1ȦP )]

=O(σ).

Combined with the fact that <(X) = <(X∗), we have

J−1
ωω =

σ

2

{
σ<[(ȦHR−1Ȧ)∗ ◦ (PAHR−1AP )]

+ σ<[(ȦHR−1A)∗ ◦ (PAHR−1ȦP )]
}−1

=
σ

2

{
<[(ȦHΠ⊥AȦ)∗ ◦ (PAHR−1AP ) +O(σ)]

}−1

=
σ

2

{
<[(ȦHΠ⊥AȦ) ◦ (PAHR−1AP )T ] + <[O(σ)]

}−1
.

By Lemma 3, we obtain that J−1
ωω

.
= B(sto).
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AHR−2A = σ−2AHA(σP−1 +AHA)−1[σP−1 +AHA− 2AHA+AHA(σP−1 +AHA)−1AHA]

= σ−2AHA(σP−1 +AHA)−1[σP−1 −AHA(σP−1 +AHA)−1(σP−1 +AHA−AHA)]

= σ−2AHA(σP−1 +AHA)−1(σP−1 +AHA−AHA)(σP−1 +AHA)−1σP−1

= AHA(σP−1 +AHA)−1P−1(σP−1 +AHA)−1P−1.

(27)

APPENDIX C
PROOF OF PROPOSITION 1

Following [26, Appendix G], for ULAs with a large number
of sensors, M , we have

1

M
AHA ≈ I, 1

M2
AHȦ ≈ j

2
I,

1

M3
ȦHȦ ≈ 1

3
I. (28)

Applying Lemma 2, the inverse of R can be rewritten as

R−1 = σ−1[I −A(σP−1 +AHA)−1AH ]. (29)

Combined with the assumption that SNR−1
i = σ/pi � M ,

we have

AHR−1A

=σ−1AHA[I − (σP−1 +AHA)−1AHA]

=σ−1AHA(σP−1 +AHA)−1[σP−1 +AHA−AHA]

=AHA(σP−1 +AHA)−1P−1

≈P−1,
(30)

ȦHR−1A

=σ−1[ȦHA− ȦHA(σP−1 +AHA)−1AHA]

=σ−1ȦHA(σP−1 +AHA)−1(σP−1 +AHA−AHA)

=ȦHA(σP−1 +AHA)−1P−1

≈− jM
2
P−1,

(31)
and

ȦHR−1Ȧ

=σ−1[ȦHȦ− ȦHA(σP−1 +AHA)−1AHȦ]

≈M
3

12
σ−1I.

(32)

Substituting (30)–(32) into the expression of Jωω , we obtain

Jωω =
M3

6
σ−1P .

Using similar tricks, we can obtain the following:

tr(R−2) ≈ σ−2(M −K), (33)

AHR−2A = AHA[(σP−1 +AHA)P ]−2 ≈ P
−2

M
, (34)

ȦHR−2A = ȦHA[(σP−1 +AHA)P ]−2 ≈ −jP
−2

2
.

(35)

The detailed derivation of (34) is summarized in (27). The
derivation of (35) follows the same idea.

By (30), (34) and (33), we obtain that Jpp ≈ P−2, Jpσ ≈
diag(P−2)/M and that Jσσ ≈ σ−2(M−K). Therefore, using
block-wise inversion, we get[

Jpp Jpσ
Jσp Jσσ

]−1

≈

[
P 2 − σ2

M(M−K)1K

− σ2

M(M−K)1
T
K

σ2

M−K

]
.

Denote the above inverse as K−1
1 and define K2 =

[Jωp Jωσ]. We have

B(sto-uc)(ω) = (Jωω −K2K
−1
1 KH

2 )−1.

According to (31) and (35), in the expressions of Jωp
and Jωσ , the terms inside the <(·) operator will be almost
imaginary. Therefore, both Jωp and Jωσ will be approx-
imately zeros for large values of M . Combined with our
previous approximations of K−1

1 and Jωω , we conclude that
KH

2 K
−1
1 K2 becomes negligible compared with Jωω for large

values of M . Therefore,

B(sto-uc)(ω) ≈ 1

N
J−1
ωω =

6

M3N
σP−1.

APPENDIX D
PROOF OF THEOREM 2 AND 4

A. The Nested Array Case
Given a nested array configured with the parameter pair

(N1, N2), its steering vector for the one-source case is given
by a = [aT1 a

T
2 ]T , where

aT1 =
[
ejω ej2ω · · · ejN1ω

]
, (36)

aT2 =
[
ej(N1+1)ω ej2(N1+1)ω · · · ejN2(N1+1)ω

]
. (37)

With respect to ω, the derivative vector ȧ is given by ȧ =
jDa, where D = diag(D1,D2), and

D1 = diag(1, 2, . . . , N1),

D2 = diag(N1 + 1, 2(N1 + 1), . . . , N2(N1 + 1)).
(38)

By letting N1 = µM , N2 = (1 − µ)M , we can approximate
the following terms as

aHa =M, (39)

ȧHa =− jaHDa = −j

µM∑
q=1

q +

(1−µ)M∑
q=1

q(µM + 1)


≈− j 1

2
µ(1− µ)2M3, (40)

ȧH ȧ =aHD2a =

µM∑
q=1

q2 +

(1−µ)M∑
q=1

[q(µM + 1)]2

≈1

3
µ2(1− µ)3M5, (41)
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where the approximations are obtained by removing terms that
are at least one-order smaller than the highest order terms.

We can calculate the inverse of R from Lemma 2 as

R−1 = σ−1
[
I − aaH

σp−1 +M

]
. (42)

Hence, under the assumption that SNR−1 �M , we have

aHR−1a = σ−1
[
aHa− aHaaHa

σp−1 +M

]
= σ−1

[
M − M2

σp−1 +M

]
≈ p−1,

ȧHR−1a =σ−1
[
ȧHa− ȧHaaHa

σp−1 +M

]
≈p−1−jµ(1− µ)2M3

2(σp−1 +M)

≈− j 1

2
µ(1− µ)2M2p−1,

and

ȧHR−1ȧ =σ−1
[
ȧH ȧ− ȧHaaH ȧ

σp−1 +M

]
≈σ−1

[
1

3
µ2(1− µ)3M5 − µ2(1− µ)4M6

4(σp−1 +M)

]
=

1

12
µ2(1− µ)3(1 + 3µ)M5σ−1.

Observing that ȧHR−1a = jaHDR−1a and ȧHR−2a =
jaHDR−2a are both purely imaginary, and that aHR−1a is
real, we immediately know that Jωp and Jωσ are exactly zero.
Hence, the FIM takes the following form:

J = N

Jωω 0 0
0 ∗ ∗
0 ∗ ∗

 . (43)

Therefore, to obtain B(sto-uc)(ω), we need to evaluate only
Jωω , which is given by

Jωω = 2<[(ȧHR−1ȧ)∗ ◦ (p2aHR−1a)

+ (ȧHR−1a)∗ ◦ (p2aHR−1ȧ)]

= 2<
[
µ2

12
(1− µ)3(1 + 3µ)M5pσ−1 +

µ2

4
(1− µ)4M4

]
≈ 1

6
µ2(1− µ)3(1 + 3µ)M5pσ−1.

Therefore,

B(sto-uc)(ω) =
1

N
J−1
ωω ≈

6

µ2(1− µ)3(1 + 3µ)

1

N

1

M5

1

SNR
.

B. The Co-prime Array Case

In the one-source case, the steering matrix A of a co-prime
array reduces to a vector a = [aT1 a

T
2 ]T , where

aT1 =
[
1 ejN1ω · · · ej(N2−1)N1ω

]
, (44)

aT2 =
[
ejN2ω ej2N2ω · · · ej(2N1−1)N2ω

]
. (45)

With respect to ω, the derivative vector ȧ is given by ȧ =
jDa, where D = diag(D1,D2), and

D1 = diag(0, N1, . . . , (N2 − 1)N1),

D2 = diag(N2, 2N2, . . . , (2N1 − 1)N2).
(46)

Similar to the nested array case, by setting N1 = µ(M +1)
and N2 = (1−2µ)(M+1), we can approximate the following
terms:

aHa = M,

ȧHa = −j

[
(1−2µ)(M+1)−1∑

q=1

qµ(M + 1)+

2µ(M+1)−1∑
q=1

q(1− 2µ)(M + 1)

]

≈ −j 1

2
µ(1− 4µ2)M3.

ȧH ȧ =

(1−2µ)(M+1)−1∑
q=1

q2(µ(M + 1))2+

2µ(M+1)−1∑
q=1

q2(1− 2µ)2(M + 1)2

≈1

3
µ2(1− 2µ)2(1 + 6µ)M5.

Combined with the assumption that SNR−1 �M , we obtain
that

aHR−1a ≈p−1,

ȧHR−1a ≈− j 1

2
µ(1− 4µ2)M2p−1,

and

ȧHR−1ȧ ≈ 1

12
µ2(1− 2µ)2(1 + 12µ− 12µ2)M5σ−1.

Similar to the nested array case, to obtain B(sto-uc)(ω), we
need to evaluate only Jωω, which is given by

Jωω =2<
[ 1

12
µ2(1− 2µ)2(1 + 12µ− 12µ2)M5pσ−1+

1

4
µ2(1− 4µ2)2M4

]
≈1

6
µ2(1− 2µ)2(1 + 12µ− 12µ2)M5pσ−1.

Therefore,

B(sto-uc)(ω) ≈ 6

µ2(1− 2µ)2(1 + 12µ− 12µ2)

1

N

1

M5

1

SNR
.

APPENDIX E
PROOF OF THEOREM 3

A. The Non-degenerate Case

We begin by proving the first part of the theorem. In the
multiple-source case, the steering matrix of the nested array
generated by the parameter pair (N1, N2) can be expressed as
A = [AT

1 A
T
2 ]T , where

A1 =
[
a1(ω1) a1(ω2) · · · a1(ωK)

]
,

A2 =
[
a2(ω1) a2(ω2) · · · a2(ωK)

]
,

(47)
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and a1, a2 follow the same definitions as those in (36), (37).
We also have Ȧ = jDA, where D = diag(D1,D2) follows
the same definition as that in (38). Therefore,[

AHA
]
m,n

= [AH
1 A1]m,n + [AH

2 A2]m,n

=

N1∑
q=1

ejq(ωm−ωn) +

N2∑
q=1

ejq(N1+1)(ωm−ωn).

(48)
Here [·]m,n denotes the (m,n)-th element.

The diagonal elements of AHA simply reduces to M . If we
can bound the off-diagonal elements, we can then approximate
AHA with MI for a sufficiently large M . If ȦHA and ȦHȦ
can be approximated in a similar way, we can approximate
B(sto-uc)(ω) with an approach similar to the one we used
in Appendix C. To make such approximations possible, we
introduce the following lemma.

Lemma 8: Let Q, L be positive integers and 0 < δ < 1. Let
ω ∈ (−2π, 2π) ∩ ΩδL, where ΩδL follows the same definition
as in Definition 3. Then∣∣∣∣∣

Q−1∑
q=0

ejqωL

∣∣∣∣∣ ≤ δ−1,

∣∣∣∣∣
Q−1∑
q=0

qejqωL

∣∣∣∣∣ ≤ Q

2
δ−2,

∣∣∣∣∣
Q−1∑
q=0

q2ejqωL

∣∣∣∣∣ ≤ 1

2
(Q2δ−2 +Qδ−3).

Proof: By the definition of ΩδL, we know that
| sin(ωL/2)|−1 ≤ δ−1. By Lemma 4, the left-hand-side (LHS)
of the first inequality follows

LHS =

∣∣∣∣∣ sin ωQL
2

sin ωL
2

ej
(Q−1)ωL

2

∣∣∣∣∣ ≤
∣∣∣∣sin ωL2

∣∣∣∣−1

≤ δ−1.

By Lemma 5, the LHS of the second inequality follows

LHS =

∣∣∣∣ (Q− 1)ejQωL −Qej(Q−1)ωL + 1

2(cos(ωL)− 1)

∣∣∣∣
≤|(Q− 1)ejQωL|+ |Qej(Q−1)ωL|+ 1

2| cos(ωL)− 1|

=
Q

2| sin2 ωL
2 |

≤Q
2
δ−2.

By Lemma 6, the LHS of the third equality follows

LHS ≤
∣∣∣∣Q(Q− 1)(ejQωL − ej(Q−1)ωL)

2(cos(ωL)− 1)

∣∣∣∣
+

∣∣∣∣ (Q− 1)ej(QωL−
π
2 ) −Qej((Q−1)ωL−π2 ) + j

2(cos(ωL)− 1)2(sin(ωL))−1

∣∣∣∣
≤
∣∣∣∣ Q2

cos(ωL)− 1

∣∣∣∣+

∣∣∣∣ Q sin(ωL)

(cos(ωL)− 1)2

∣∣∣∣
≤ Q2

2 sin2 ωL
2

+
Q

2
∣∣sin3 ωL

2

∣∣
≤1

2
(Q2δ−2 +Qδ−3).

Under the assumption that the K-DOAs are δ-level non-
degenerate with respect to 1 and N1 + 1, we immediately
know from Lemma 8 that when m 6= n,

|[AHA]m,n| ≤ 2δ−1,

|[ȦHA]m,n| ≤
M

2
δ−2,

|[ȦHȦ]m,n| ≤
2µ2 − 2µ+ 1

2
M2δ−2 +

M

2
δ−3.

Here we use the fact that N1 +N2 = M and that µ = N1/M .
When m = n, we know from (39)–(41) that,

[AHA]m,m = M,

[ȦHA]m,m ≈ −j
1

2
µ(1− µ)2M3,

[ȦHȦ]m,m ≈
1

3
µ2(1− µ)3M5.

Because µ and δ are fixed, for a sufficiently large M , the
off-diagonal elements in AHA, ȦHA, and ȦHȦ are indeed
negligible compared with the their corresponding diagonal
elements, leading to

AHA ≈MI,

ȦHA ≈ −j 1

2
µ(1− µ)2M3I,

ȦHȦ ≈ 1

3
µ2(1− µ)3M5I.

Following the derivations of (30)–(32), we obtain that, in the
nested array case,

AHR−1A ≈ P−1, (49)

ȦHR−1A ≈ −j µ(1− µ)2

2
M2P−1, (50)

ȦHR−1Ȧ ≈ 1

12
µ2(1− µ)3(1 + 3µ)M5σ−1I. (51)

Following the derivations of (33)–(35), we also obtain that

tr(R−2) ≈ σ−2(M −K),

AHR−2A ≈ P
−2

M
,

ȦHR−2A ≈ −j 1

2
µ(1− µ)2MP−2.

We can observe that the approximations of AHR−1A,
tr(R−2), and AHR−2A are the same as those in the ULA
case. Additionally, both ȦHR−1A and ȦHR−2A are ap-
proximately imaginary. Following the same reasoning as in
Appendix C, we only need to compute Jωω to approximate
B(sto-uc)(ω). Combining (49)–(51) with the definition of Jωω ,
we obtain that

Jωω ≈
1

6
µ2(1− µ)3(1 + 3µ)M5σ−1P .

Therefore

B(sto-uc)(ω) ≈ 1

N
Jωω ≈

1

hne(µ)

1

N

1

M5
σP−1. (52)
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B. The Fully Degenerate Case

For brevity, we denote ωm − ωn by ωmn. In the following
discussion, D1, D2, A1, and A2 follow the same definitions
as in (38) and (47). In the fully degenerate case, we have
(N1 + 1)ωmn = 2kπ for some non-zero integer k whenever
m 6= n. Therefore AH

2 A2 = N21K1K , where 1K1K is K ×
K matrix of ones. For a fixed µ, when M is sufficiently large,
N1 is also large and AH

1 A1 ≈ N1I [26]. Hence, we have

AHA ≈ N1I +N21K1TK

= µMI + (1− µ)M1K1TK . (53)

We next evaluateAHDA = AH
1 D1A1+AH

2 D2A2, where

[AH
1 D1A1]m,n =

N1∑
q=1

qejqωnm , (54)

[AH
2 D2A2]m,n =

N2∑
q=1

q(N1 + 1)ejq(N1+1)ωnm . (55)

Combining Lemma 5 with the fact that (N1 + 1)ωmn = 2kπ,
we have

[AH
1 D1A1]m,n

=
N1 cos((N1 + 1)ωnm)− (N1 + 1) cos(N1ωnm) + 1

2(cosωnm − 1)

+ j
N1 sin((N1 + 1)ωnm)− (N1 + 1) sin(N1ωnm)

2(cosωnm − 1)

=
N1 + 1

2(cosωnm − 1)
[1− cos(N1ωnm)− j sin(N1ωnm)] ,

when m 6= n,

[AH
1 D1A1]m,n =

1

2
N1(N1 + 1),

when m = n, and

[AH
2 D2A2]m,n =

N2∑
q=1

q(N1 + 1) =
1

2
N2(N2 + 1)(N1 + 1).

When M is sufficiently large, AH
1 D1A1 becomes negligible.

Substituting N1 with µM and N2 with (1− µ)M , we obtain
that

ȦHA ≈ −jAH
2 D2A2 ≈ −j

µ(1− µ)2

2
M31K1TK . (56)

Similar to the non-degenerate case, we can still show that
B(sto-uc) ≈ J−1

ωω/N . However, because AHA, ȦHA can no
longer be approximated as diagonal matrices, we need an
alternative way of approximating Jωω .

According to (31),

ȦHR−1A = ȦHA(σP−1 +AHA)−1P−1.

Combined with (53) and (56), we know that ȦHR−1A is
O(M2). Hence, (ȦHR−1A)∗ ◦ (PAHR−1ȦP ) is O(M4).
One the other hand, following the steps in (30), we have

(ȦHR−1Ȧ)∗ ◦ (PAHR−1AP ) ≈ (ȦHR−1Ȧ)∗ ◦P , (57)

which is approximately diagonal. Therefore, we need to only
evaluate the diagonals of ȦHR−1Ȧ. According (32), we have

σ[ȦHR−1Ȧ]k,k ≈ [ȦHȦ]k,k − [ȦHA(AHA)−1AHȦ]k,k

Following (41), the first term is given by

[ȦHȦ]k,k ≈
µ2(1− µ)3

3
M5. (58)

To evaluate the second term, we need to first evaluate
(AHA)−1. By Lemma 2,

(AHA)−1 = − 1

µM

[
1

K + µ
1−µ

1K1TK − I

]
.

Combined with (56), we obtain that

[ȦHA(AHA)−1AHȦ]k,k

=− 1

µM

 1

K + µ
1−µ

∣∣∣∣∣∣
K∑
j=1

[ȦHA]k,j

∣∣∣∣∣∣
2

−
K∑
j=1

∣∣∣[ȦHA]k,j

∣∣∣2


≈K
4

µ2(1− µ)4

µ+ (1− µ)K
M5.

Combining the above result with (58), we have

σ[ȦHR−1Ȧ]k,k ≈
µ2(1− µ)3

12

4µ+ (1− µ)K

µ+ (1− µ)K
M5.

Therefore, the term (ȦHR−1Ȧ)∗ ◦ (PAHR−1AP ) is
O(M5) and the term (ȦHR−1A)∗ ◦ (PAHR−1ȦP ) will
be negligible when M is sufficiently large, leading to

Jωω ≈2<[(ȦHR−1Ȧ)∗ ◦ (PAHR−1AP )]

≈µ
2(1− µ)3

6

4µ+ (1− µ)K

µ+ (1− µ)K
M5σ−1P .

Finally, because B(sto-uc) ≈ J−1
ωω/N , we obtain (17).
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